Find the period and phase shift (horizontal shift) of the function. Answer exactly. \( f(x)=3 \csc \left(\frac{\pi}{2} x+\pi\right) \) Period: Phase shift:
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
The function \( f(x) = 3 \csc\left(\frac{\pi}{2} x + \pi\right) \) is based on the cosecant function, which has a standard period of \( 2\pi \). To find the period of your function, we take the coefficient of \( x \) inside the cosecant function, which is \( \frac{\pi}{2} \). The period is calculated as \( \frac{2\pi}{\frac{\pi}{2}} = 4 \). For the phase shift, we start by rearranging the equation inside the cosecant function: \( \frac{\pi}{2} x + \pi = 0 \) gives us \( x = -\frac{2}{\pi} \). This tells us the phase shift is \( -\frac{2}{\pi} \), which indicates a horizontal shift to the left by \( \frac{2}{\pi} \). Period: \( 4 \) Phase shift: \( -\frac{2}{\pi} \) (shifted left)