(13) \( \frac{8 d^{2}+24 d}{20} \div(d+3)^{2} \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To simplify the expression \( \frac{8 d^{2}+24 d}{20} \div(d+3)^{2} \), we first simplify the numerator. Notice that \( 8d^{2} + 24d \) can be factored as \( 8d(d+3) \). So we rewrite the expression as follows: \[ \frac{8d(d + 3)}{20} \div (d + 3)^{2} \] Next, dividing by \( (d + 3)^{2} \) is equivalent to multiplying by its reciprocal: \[ = \frac{8d(d + 3)}{20} \cdot \frac{1}{(d + 3)^{2}} \] Now, we can cancel one \( (d + 3) \) factor from the numerator: \[ = \frac{8d}{20(d + 3)} \] Finally, we simplify \( \frac{8d}{20} \): \[ = \frac{2d}{5(d + 3)} \] So, the final simplified form of the original expression is: \[ \frac{2d}{5(d + 3)} \]