Pregunta
upstudy study bank question image url

A circle has the equation \( x^{2}+y^{2}+2 x-4 y-11= \) (a) Find the center (h,k) and radius \( r \) of the circle (b) Graph the circle. (c) Find the intercepts, if any, of the graph.

Ask by Carrillo Coleman. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The circle has its center at \((-1, 2)\) and a radius of 4. It intercepts the x-axis at approximately \(-4.464\) and \(2.464\), and the y-axis at approximately \(-0.872\) and \(4.872\).

Solución

To solve the problem, we will follow these steps: ### Part (a): Find the center \((h, k)\) and radius \(r\) of the circle The equation of the circle is given as: \[ x^{2} + y^{2} + 2x - 4y - 11 = 0 \] We will rearrange this equation into the standard form of a circle, which is: \[ (x - h)^{2} + (y - k)^{2} = r^{2} \] 1. **Rearranging the equation:** \[ x^{2} + 2x + y^{2} - 4y = 11 \] 2. **Completing the square for \(x\):** - Take the coefficient of \(x\) (which is 2), halve it (1), and square it (1). - Add and subtract 1: \[ (x^{2} + 2x + 1) - 1 \] 3. **Completing the square for \(y\):** - Take the coefficient of \(y\) (which is -4), halve it (-2), and square it (4). - Add and subtract 4: \[ (y^{2} - 4y + 4) - 4 \] 4. **Substituting back into the equation:** \[ (x + 1)^{2} - 1 + (y - 2)^{2} - 4 = 11 \] \[ (x + 1)^{2} + (y - 2)^{2} - 5 = 11 \] \[ (x + 1)^{2} + (y - 2)^{2} = 16 \] Now we can identify the center and radius: - Center \((h, k) = (-1, 2)\) - Radius \(r = \sqrt{16} = 4\) ### Part (b): Graph the circle To graph the circle, we will plot the center at \((-1, 2)\) and draw a circle with a radius of 4. ### Part (c): Find the intercepts, if any, of the graph 1. **Finding the x-intercepts:** Set \(y = 0\) in the original equation: \[ x^{2} + 0^{2} + 2x - 4(0) - 11 = 0 \] \[ x^{2} + 2x - 11 = 0 \] 2. **Finding the y-intercepts:** Set \(x = 0\) in the original equation: \[ 0^{2} + y^{2} + 2(0) - 4y - 11 = 0 \] \[ y^{2} - 4y - 11 = 0 \] Now, we will solve these equations to find the intercepts. Let's perform the calculations for the x-intercepts and y-intercepts. Solve the quadratic equation by following steps: - step0: Solve using the quadratic formula: \(y^{2}-4y-11=0\) - step1: Solve using the quadratic formula: \(y=\frac{4\pm \sqrt{\left(-4\right)^{2}-4\left(-11\right)}}{2}\) - step2: Simplify the expression: \(y=\frac{4\pm \sqrt{60}}{2}\) - step3: Simplify the expression: \(y=\frac{4\pm 2\sqrt{15}}{2}\) - step4: Separate into possible cases: \(\begin{align}&y=\frac{4+2\sqrt{15}}{2}\\&y=\frac{4-2\sqrt{15}}{2}\end{align}\) - step5: Simplify the expression: \(\begin{align}&y=2+\sqrt{15}\\&y=\frac{4-2\sqrt{15}}{2}\end{align}\) - step6: Simplify the expression: \(\begin{align}&y=2+\sqrt{15}\\&y=2-\sqrt{15}\end{align}\) - step7: Rewrite: \(y_{1}=2-\sqrt{15},y_{2}=2+\sqrt{15}\) Solve the equation \( x^{2}+2x-11=0 \). Solve the quadratic equation by following steps: - step0: Solve using the quadratic formula: \(x^{2}+2x-11=0\) - step1: Solve using the quadratic formula: \(x=\frac{-2\pm \sqrt{2^{2}-4\left(-11\right)}}{2}\) - step2: Simplify the expression: \(x=\frac{-2\pm \sqrt{48}}{2}\) - step3: Simplify the expression: \(x=\frac{-2\pm 4\sqrt{3}}{2}\) - step4: Separate into possible cases: \(\begin{align}&x=\frac{-2+4\sqrt{3}}{2}\\&x=\frac{-2-4\sqrt{3}}{2}\end{align}\) - step5: Simplify the expression: \(\begin{align}&x=-1+2\sqrt{3}\\&x=\frac{-2-4\sqrt{3}}{2}\end{align}\) - step6: Simplify the expression: \(\begin{align}&x=-1+2\sqrt{3}\\&x=-1-2\sqrt{3}\end{align}\) - step7: Rewrite: \(x_{1}=-1-2\sqrt{3},x_{2}=-1+2\sqrt{3}\) ### Part (a): Center and Radius - Center \((h, k) = (-1, 2)\) - Radius \(r = 4\) ### Part (b): Graph the Circle To graph the circle, plot the center at \((-1, 2)\) and draw a circle with a radius of 4 units. The circle will extend from \((-5, 2)\) to \((3, 2)\) horizontally and from \((-1, -2)\) to \((-1, 6)\) vertically. ### Part (c): Finding the Intercepts 1. **X-Intercepts:** The x-intercepts are found by solving the equation: \[ x^{2} + 2x - 11 = 0 \] The solutions are: \[ x_{1} = -1 - 2\sqrt{3}, \quad x_{2} = -1 + 2\sqrt{3} \] 2. **Y-Intercepts:** The y-intercepts are found by solving the equation: \[ y^{2} - 4y - 11 = 0 \] The solutions are: \[ y_{1} = 2 - \sqrt{15}, \quad y_{2} = 2 + \sqrt{15} \] ### Summary of Intercepts - **X-Intercepts:** - \(x_{1} = -1 - 2\sqrt{3} \approx -4.464\) - \(x_{2} = -1 + 2\sqrt{3} \approx 2.464\) - **Y-Intercepts:** - \(y_{1} = 2 - \sqrt{15} \approx -0.872\) - \(y_{2} = 2 + \sqrt{15} \approx 4.872\) This completes the solution for the circle's center, radius, graph, and intercepts.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

Let's tackle this step by step. ### (a) Center and Radius Calculation To find the center and radius of the circle given by the equation \( x^{2}+y^{2}+2x-4y-11=0 \), we need to rewrite it in the standard form \( (x-h)^{2} + (y-k)^{2} = r^{2} \). 1. Rearranging the equation: \[ x^{2} + 2x + y^{2} - 4y = 11 \] 2. Completing the square for the \( x \) terms: \[ x^{2} + 2x \rightarrow (x + 1)^{2} - 1 \] 3. Completing the square for the \( y \) terms: \[ y^{2} - 4y \rightarrow (y - 2)^{2} - 4 \] 4. Substituting back, we have: \[ (x + 1)^{2} - 1 + (y - 2)^{2} - 4 = 11 \] Which simplifies to: \[ (x + 1)^{2} + (y - 2)^{2} = 16 \] Thus, the center is \( (-1, 2) \) and the radius \( r \) is \( 4 \) (since \( r^{2} = 16 \Rightarrow r = 4 \)). ### (b) Graphing the Circle To graph the circle with center \( (-1, 2) \) and radius \( 4 \): 1. Start by plotting the center point at \( (-1, 2) \). 2. From the center, move up, down, left, and right \( 4 \) units to plot the points: - Up: \( (-1, 2 + 4) = (-1, 6) \) - Down: \( (-1, 2 - 4) = (-1, -2) \) - Left: \( (-1 - 4, 2) = (-5, 2) \) - Right: \( (-1 + 4, 2) = (3, 2) \) 3. Draw a smooth curve connecting these points to complete the circle. ### (c) Finding Intercepts To find the intercepts, we can set \( x = 0 \) for the y-intercept and \( y = 0 \) for the x-intercept. 1. **Y-intercept:** Plug \( x = 0 \) into the circle's equation: \[ 0^{2} + y^{2} + 2(0) - 4y - 11 = 0 \Rightarrow y^2 - 4y - 11 = 0 \] Using the quadratic formula: \[ y = \frac{4 \pm \sqrt{16 + 44}}{2} = \frac{4 \pm \sqrt{60}}{2} = 2 \pm \sqrt{15} \] Thus, the y-intercepts are \( (0, 2 + \sqrt{15}) \) and \( (0, 2 - \sqrt{15}) \). 2. **X-intercept:** Plug \( y = 0 \) into the equation: \[ x^{2} + 0^{2} + 2x - 4(0) - 11 = 0 \Rightarrow x^2 + 2x - 11 = 0 \] Again using the quadratic formula: \[ x = \frac{-2 \pm \sqrt{4 + 44}}{2} = \frac{-2 \pm \sqrt{48}}{2} = -1 \pm 2\sqrt{3} \] Thus, the x-intercepts are \( (-1 + 2\sqrt{3}, 0) \) and \( (-1 - 2\sqrt{3}, 0) \). Now you have all the information you need! Happy graphing! 🎉

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad