Pregunta
Question If \( C=y+5 \) and \( D=y^{2}-y-9 \), find an expression that equals \( 2 C-D \) in standard fo Answer Attempt 1 out of 2
Ask by Ward Ortiz. in the United States
Feb 03,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The expression \( 2C - D \) simplifies to \( -y^2 + 3y + 19 \).
Solución
To find the expression that equals \( 2C - D \), we will follow these steps:
1. Substitute the expressions for \( C \) and \( D \) into the equation.
2. Simplify the resulting expression.
Given:
- \( C = y + 5 \)
- \( D = y^2 - y - 9 \)
Now, let's calculate \( 2C - D \):
\[
2C = 2(y + 5) = 2y + 10
\]
Next, we substitute \( D \):
\[
D = y^2 - y - 9
\]
Now, we can find \( 2C - D \):
\[
2C - D = (2y + 10) - (y^2 - y - 9)
\]
Now, let's simplify this expression step by step:
1. Distribute the negative sign across \( D \):
\[
2C - D = 2y + 10 - y^2 + y + 9
\]
2. Combine like terms:
- Combine \( 2y \) and \( y \):
\[
2y + y = 3y
\]
- Combine \( 10 \) and \( 9 \):
\[
10 + 9 = 19
\]
Putting it all together, we have:
\[
2C - D = -y^2 + 3y + 19
\]
Now, let's express this in standard form, which is typically written with the highest degree term first:
\[
2C - D = -y^2 + 3y + 19
\]
Thus, the final expression that equals \( 2C - D \) in standard form is:
\[
-y^2 + 3y + 19
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Beyond the Answer
Let's break it down and find the expression for \( 2C - D \). First, we have \( C = y + 5 \), so: \[ 2C = 2(y + 5) = 2y + 10 \] Now, using \( D = y^2 - y - 9 \), we proceed to calculate \( 2C - D \): \[ 2C - D = (2y + 10) - (y^2 - y - 9) \] Distributing the negative sign: \[ = 2y + 10 - y^2 + y + 9 \] Combining like terms: \[ = -y^2 + 3y + 19 \] So, the expression that equals \( 2C - D \) in standard form is: \[ -y^2 + 3y + 19 \] Now you've got a snazzy polynomial ready for just about any algebraic adventure!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium