Without using a calculator and by converting decimals into fractions, simplify the following: \( \begin{array}{ll}\text { (a) } \\ \begin{array}{ll}0,64 & \text { (b) } \sqrt[3]{0,008} \\ \text { (c) } \sqrt{2 \frac{7}{9}} & \text { (d) } \frac{\sqrt{64+36}}{\sqrt{64}+\sqrt{36}}\end{array}\end{array}> \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
To simplify the given mathematical expressions, we will convert decimals into fractions and work through the operations. (a) \(0.64\) can be expressed as the fraction \(\frac{64}{100}\). Simplifying this, we get: \[ \frac{64 \div 4}{100 \div 4} = \frac{16}{25}. \] (b) \(\sqrt[3]{0.008}\) can be simplified by rewriting \(0.008\) as \(\frac{8}{1000}\) or \(\frac{8}{10^3}\). Therefore, we have: \[ \sqrt[3]{0.008} = \sqrt[3]{\frac{8}{1000}} = \frac{\sqrt[3]{8}}{\sqrt[3]{1000}} = \frac{2}{10} = \frac{1}{5}. \] (c) To simplify \(\sqrt{2 \frac{7}{9}}\), we first convert the mixed number into an improper fraction: \[ 2 \frac{7}{9} = \frac{18}{9} + \frac{7}{9} = \frac{25}{9}. \] Now, taking the square root: \[ \sqrt{2 \frac{7}{9}} = \sqrt{\frac{25}{9}} = \frac{\sqrt{25}}{\sqrt{9}} = \frac{5}{3}. \] (d) For \(\frac{\sqrt{64+36}}{\sqrt{64}+\sqrt{36}}\), we first compute \(64 + 36 = 100\), leading to: \[ \frac{\sqrt{100}}{\sqrt{64}+\sqrt{36}} = \frac{10}{8 + 6} = \frac{10}{14}. \] Simplifying this fraction: \[ \frac{10 \div 2}{14 \div 2} = \frac{5}{7}. \] In summary: (a) \(\frac{16}{25}\) (b) \(\frac{1}{5}\) (c) \(\frac{5}{3}\) (d) \(\frac{5}{7}\)