Pregunta
upstudy study bank question image url

Simplify the function \( f(x)=\frac{1}{2}(27)^{\frac{2 x}{3}} \). Then determine the key aspects of the function. The initial value is The simplified base is The domain is The range is

Ask by Cook Grant. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- **Initial Value:** \( f(0) = \frac{1}{2} \) - **Simplified Base:** \( 9 \) - **Domain:** All real numbers (\( \mathbb{R} \)) - **Range:** All positive real numbers (\( y > 0 \))

Solución

To simplify the function \( f(x) = \frac{1}{2} \cdot 27^{\frac{2x}{3}} \) and determine its key aspects, follow the steps below: ### 1. Simplifying the Function Start by simplifying the exponential expression: \[ f(x) = \frac{1}{2} \cdot 27^{\frac{2x}{3}} \] **Step 1:** Express 27 as a power of 3. \[ 27 = 3^3 \] **Step 2:** Substitute \( 27 \) with \( 3^3 \) in the function. \[ f(x) = \frac{1}{2} \cdot \left(3^3\right)^{\frac{2x}{3}} \] **Step 3:** Apply the power of a power property \((a^m)^n = a^{m \cdot n}\). \[ f(x) = \frac{1}{2} \cdot 3^{3 \cdot \frac{2x}{3}} = \frac{1}{2} \cdot 3^{2x} \] **Step 4:** Recognize that \( 3^{2x} \) can be written as \( (3^2)^x = 9^x \). \[ f(x) = \frac{1}{2} \cdot 9^x \] **Simplified Function:** \[ f(x) = \frac{1}{2} \cdot 9^x \] ### 2. Key Aspects of the Function #### **a. Initial Value** The initial value of the function is the value of \( f(x) \) when \( x = 0 \). \[ f(0) = \frac{1}{2} \cdot 9^0 = \frac{1}{2} \cdot 1 = \frac{1}{2} \] **Initial Value:** \( f(0) = \frac{1}{2} \) #### **b. Simplified Base** From the simplified function, the base of the exponential expression is: \[ 9 \] **Simplified Base:** \( 9 \) #### **c. Domain** The domain of an exponential function \( a^x \) is all real numbers, as you can raise a positive base to any real exponent. **Domain:** \( \mathbb{R} \) (All real numbers) #### **d. Range** The range of an exponential function \( a^x \) where \( a > 1 \) is all positive real numbers. Since the function is multiplied by \( \frac{1}{2} \), it scales the range but does not change its nature. \[ f(x) = \frac{1}{2} \cdot 9^x > 0 \quad \text{for all } x \in \mathbb{R} \] **Range:** \( (0, +\infty) \) ### **Summary** - **Initial Value:** \( f(0) = \frac{1}{2} \) - **Simplified Base:** \( 9 \) - **Domain:** All real numbers (\( \mathbb{R} \)) - **Range:** All positive real numbers (\( y > 0 \))

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To simplify the function \( f(x)=\frac{1}{2}(27)^{\frac{2 x}{3}} \), we start by rewriting the base in exponential form. We know that \( 27 = 3^3 \), so: \[ f(x) = \frac{1}{2} (3^3)^{\frac{2x}{3}} = \frac{1}{2} \cdot 3^{2x} = \frac{1}{2} \cdot (3^{2})^x = \frac{1}{2} \cdot 9^x \] Now, we can determine the key aspects of the function: The initial value is \( f(0) = \frac{1}{2} \cdot 9^0 = \frac{1}{2} \cdot 1 = \frac{1}{2} \). The simplified base is \( 9 \). The domain is all real numbers \( (-\infty, \infty) \), since exponential functions are defined for every real input. The range is \( (0, \infty) \) because the function approaches, but never reaches, zero as \( x \) approaches negative infinity and increases without bound as \( x \) increases.

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad