Responder
- **Initial Value:** \( f(0) = \frac{1}{2} \)
- **Simplified Base:** \( 9 \)
- **Domain:** All real numbers (\( \mathbb{R} \))
- **Range:** All positive real numbers (\( y > 0 \))
Solución
To simplify the function \( f(x) = \frac{1}{2} \cdot 27^{\frac{2x}{3}} \) and determine its key aspects, follow the steps below:
### 1. Simplifying the Function
Start by simplifying the exponential expression:
\[
f(x) = \frac{1}{2} \cdot 27^{\frac{2x}{3}}
\]
**Step 1:** Express 27 as a power of 3.
\[
27 = 3^3
\]
**Step 2:** Substitute \( 27 \) with \( 3^3 \) in the function.
\[
f(x) = \frac{1}{2} \cdot \left(3^3\right)^{\frac{2x}{3}}
\]
**Step 3:** Apply the power of a power property \((a^m)^n = a^{m \cdot n}\).
\[
f(x) = \frac{1}{2} \cdot 3^{3 \cdot \frac{2x}{3}} = \frac{1}{2} \cdot 3^{2x}
\]
**Step 4:** Recognize that \( 3^{2x} \) can be written as \( (3^2)^x = 9^x \).
\[
f(x) = \frac{1}{2} \cdot 9^x
\]
**Simplified Function:**
\[
f(x) = \frac{1}{2} \cdot 9^x
\]
### 2. Key Aspects of the Function
#### **a. Initial Value**
The initial value of the function is the value of \( f(x) \) when \( x = 0 \).
\[
f(0) = \frac{1}{2} \cdot 9^0 = \frac{1}{2} \cdot 1 = \frac{1}{2}
\]
**Initial Value:** \( f(0) = \frac{1}{2} \)
#### **b. Simplified Base**
From the simplified function, the base of the exponential expression is:
\[
9
\]
**Simplified Base:** \( 9 \)
#### **c. Domain**
The domain of an exponential function \( a^x \) is all real numbers, as you can raise a positive base to any real exponent.
**Domain:** \( \mathbb{R} \) (All real numbers)
#### **d. Range**
The range of an exponential function \( a^x \) where \( a > 1 \) is all positive real numbers. Since the function is multiplied by \( \frac{1}{2} \), it scales the range but does not change its nature.
\[
f(x) = \frac{1}{2} \cdot 9^x > 0 \quad \text{for all } x \in \mathbb{R}
\]
**Range:** \( (0, +\infty) \)
### **Summary**
- **Initial Value:** \( f(0) = \frac{1}{2} \)
- **Simplified Base:** \( 9 \)
- **Domain:** All real numbers (\( \mathbb{R} \))
- **Range:** All positive real numbers (\( y > 0 \))
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución