Pregunta
upstudy study bank question image url

St \( 1(4.2,4.5-4.9) \) Determine whether Rolle's Theorem applies to the given function on the given interv \( f(x)=\sin 5 x ;\left[\frac{\pi}{5}, \frac{2 \pi}{5}\right] \)

Ask by Wang Ramos. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Rolle's Theorem applies to \( f(x) = \sin(5x) \) on \( \left[\frac{\pi}{5}, \frac{2\pi}{5}\right] \) because the function is continuous and differentiable on the interval, and \( f\left(\frac{\pi}{5}\right) = f\left(\frac{2\pi}{5}\right) = 0 \). Therefore, there exists at least one \( c \) in \( \left(\frac{\pi}{5}, \frac{2\pi}{5}\right) \) where \( f'(c) = 0 \).

Solución

To determine whether **Rolle's Theorem** applies to the function \( f(x) = \sin(5x) \) on the interval \( \left[\frac{\pi}{5}, \frac{2\pi}{5}\right] \), we'll verify the three necessary conditions of the theorem: ### **Rolle's Theorem Conditions** 1. **Continuity on \([a, b]\):** - The function \( f(x) = \sin(5x) \) is a sine function, which is continuous for all real numbers. - **Conclusion:** \( f(x) \) is continuous on \( \left[\frac{\pi}{5}, \frac{2\pi}{5}\right] \). 2. **Differentiability on \((a, b)\):** - The function \( f(x) = \sin(5x) \) is differentiable everywhere since it's a smooth trigonometric function. - **Conclusion:** \( f(x) \) is differentiable on \( \left(\frac{\pi}{5}, \frac{2\pi}{5}\right) \). 3. **Equal Function Values at the Endpoints:** - Evaluate \( f \) at the endpoints: \[ f\left(\frac{\pi}{5}\right) = \sin\left(5 \cdot \frac{\pi}{5}\right) = \sin(\pi) = 0 \] \[ f\left(\frac{2\pi}{5}\right) = \sin\left(5 \cdot \frac{2\pi}{5}\right) = \sin(2\pi) = 0 \] - **Conclusion:** \( f\left(\frac{\pi}{5}\right) = f\left(\frac{2\pi}{5}\right) = 0 \). ### **Applying Rolle's Theorem** Since all three conditions are satisfied, **Rolle's Theorem** guarantees that there exists at least one number \( c \) in \( \left(\frac{\pi}{5}, \frac{2\pi}{5}\right) \) such that: \[ f'(c) = 0 \] ### **Finding \( c \)** 1. **Compute the derivative of \( f(x) \):** \[ f'(x) = \frac{d}{dx} \sin(5x) = 5\cos(5x) \] 2. **Set the derivative equal to zero and solve for \( c \):** \[ 5\cos(5c) = 0 \implies \cos(5c) = 0 \] \[ \cos(5c) = 0 \implies 5c = \frac{\pi}{2} + k\pi \quad \text{for some integer } k \] \[ c = \frac{\pi}{10} + \frac{k\pi}{5} \] 3. **Determine \( c \) within the interval \( \left(\frac{\pi}{5}, \frac{2\pi}{5}\right) \):** - Let's find \( k \) such that \( c \) falls within \( \left(\frac{\pi}{5}, \frac{2\pi}{5}\right) \): \[ \frac{\pi}{5} < \frac{\pi}{10} + \frac{k\pi}{5} < \frac{2\pi}{5} \] - Solving for \( k \), we find \( k = 1 \): \[ c = \frac{\pi}{10} + \frac{\pi}{5} = \frac{3\pi}{10} \] - **Verification:** \[ \frac{\pi}{5} = \frac{2\pi}{10} < \frac{3\pi}{10} < \frac{4\pi}{10} = \frac{2\pi}{5} \] - \( c = \frac{3\pi}{10} \) lies within the interval \( \left(\frac{\pi}{5}, \frac{2\pi}{5}\right) \). ### **Conclusion** **Rolle's Theorem** **does apply** to the function \( f(x) = \sin(5x) \) on the interval \( \left[\frac{\pi}{5}, \frac{2\pi}{5}\right] \). Specifically, there exists a point \( c = \frac{3\pi}{10} \) in the open interval \( \left(\frac{\pi}{5}, \frac{2\pi}{5}\right) \) where the derivative \( f'(c) = 0 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To determine whether Rolle's Theorem applies to the function \( f(x) = \sin(5x) \) on the interval \( \left[\frac{\pi}{5}, \frac{2\pi}{5}\right] \), we first check if the function is continuous and differentiable in the closed interval, which it is since sine is continuous and differentiable everywhere. Next, we evaluate the endpoints: \( f\left(\frac{\pi}{5}\right) = \sin(5 \cdot \frac{\pi}{5}) = \sin(\pi) = 0 \) and \( f\left(\frac{2\pi}{5}\right) = \sin(5 \cdot \frac{2\pi}{5}) = \sin(2\pi) = 0 \). Since the function is continuous, differentiable, and \( f\left(\frac{\pi}{5}\right) = f\left(\frac{2\pi}{5}\right) \), Rolle's Theorem applies! Now, here's the fun part: did you know that the sine function is like the rollercoaster of the math world? It has ups and downs (literally) but always curls back to its starting point—a true example of consistency and harmony! If you're curious, you can explore more about sinusoids and their properties in mathematics, diving into how they play a crucial role in wave theory, sound, and even in the rhythm of music! They appear not just in math but throughout nature.

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad