Pregunta
upstudy study bank question image url

If possible, solve the system of equations. Use any method. If there is not a unique solution to the system, state a reason. \[ \begin{array}{ll}4 x-y=22 & \text { (1) } \\ 7 x+3 y=48 & \text { (2) }\end{array} \]

Ask by Hobbs Rowe. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The system has a unique solution: \( x = 6 \) and \( y = 2 \).

Solución

To solve the system of equations: \[ \begin{cases} 4x - y = 22 \quad \text{(1)} \\ 7x + 3y = 48 \quad \text{(2)} \end{cases} \] we can use the **substitution method**. Here's a step-by-step solution: ### Step 1: Solve Equation (1) for \( y \) Starting with equation (1): \[ 4x - y = 22 \] Subtract \( 4x \) from both sides: \[ -y = -4x + 22 \] Multiply both sides by \( -1 \) to solve for \( y \): \[ y = 4x - 22 \quad \text{(3)} \] ### Step 2: Substitute \( y \) into Equation (2) Now, substitute equation (3) into equation (2): \[ 7x + 3y = 48 \] Replace \( y \) with \( 4x - 22 \): \[ 7x + 3(4x - 22) = 48 \] ### Step 3: Simplify and Solve for \( x \) Expand the equation: \[ 7x + 12x - 66 = 48 \] Combine like terms: \[ 19x - 66 = 48 \] Add \( 66 \) to both sides: \[ 19x = 114 \] Divide both sides by \( 19 \): \[ x = \frac{114}{19} = 6 \] ### Step 4: Find \( y \) Using the Value of \( x \) Now that we have \( x = 6 \), substitute this back into equation (3): \[ y = 4(6) - 22 = 24 - 22 = 2 \] ### Conclusion The system has a **unique solution**: \[ x = 6, \quad y = 2 \] --- **Verification:** To ensure the solution is correct, plug \( x = 6 \) and \( y = 2 \) back into both original equations. 1. **Equation (1):** \[ 4(6) - 2 = 24 - 2 = 22 \quad \text{✓} \] 2. **Equation (2):** \[ 7(6) + 3(2) = 42 + 6 = 48 \quad \text{✓} \] Both equations are satisfied, confirming that \( x = 6 \) and \( y = 2 \) is indeed the correct solution.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve the system of equations, we'll use the substitution or elimination method. Let's use substitution for this example. From equation (1): \[ 4x - y = 22 \] We can rearrange it to express \( y \) in terms of \( x \): \[ y = 4x - 22 \] Now, substitute \( y \) into equation (2): \[ 7x + 3(4x - 22) = 48 \] Expand and simplify: \[ 7x + 12x - 66 = 48 \] Combine like terms: \[ 19x - 66 = 48 \] Now, isolate \( x \): \[ 19x = 48 + 66 \] \[ 19x = 114 \] \[ x = \frac{114}{19} \] \[ x = 6 \] Now, substitute \( x = 6 \) back into the equation for \( y \): \[ y = 4(6) - 22 \] \[ y = 24 - 22 \] \[ y = 2 \] Thus, the solution to the system of equations is \( x = 6 \) and \( y = 2 \). To verify, we can plug these values back into the original equations: For (1): \[ 4(6) - 2 = 22 \] \[ 24 - 2 = 22 \] (True) For (2): \[ 7(6) + 3(2) = 48 \] \[ 42 + 6 = 48 \] (True) The solution checks out! Therefore, the unique solution to the system is \( (x, y) = (6, 2) \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad