Pregunta
upstudy study bank question image url

9. A surveyor Measures the angle of elevation on the top of a perpendicular building as 19. He moves 120 m nearer the building and finds the angle of elevation is now \( 47^{\circ} \). Determine the height of the building. 10. If the angle of elevation of the top of a vertical \( 30 m \) high aerial is \( 32^{\circ} \), how far is it to the aerial? 11. A flagpole stands on the edge of the top of a building. At a point \( 200 m \) from the buitding the angle ofelevation of the top and bottom of the pole are \( 32^{\circ} \) and \( 30^{\circ} \) respectively. Calculate the height of the flagpole 12. If tan \( x \) a \( =1 \). 5276 , determine sec \( x \), Cosec \( x \) and cot \( x \). CAssume \( x \) is an acute angle

Ask by Higgins Conner. in Kenya
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Problem 9:** The building is approximately **61 meters** tall. **Problem 10:** The aerial is approximately **48 meters** away. **Problem 11:** The flagpole is approximately **9.5 meters** high. **Problem 12:** - \( \sec(x) \approx 1.83 \) - \( \csc(x) \approx 1.19 \) - \( \cot(x) \approx 0.65 \)

Solución

Let's solve each of the problems step-by-step. --- ### **Problem 9** **A surveyor measures the angle of elevation to the top of a perpendicular building as \(19^\circ\). He moves 120 m closer to the building and finds the angle of elevation is now \(47^\circ\). Determine the height of the building.** **Solution:** Let: - \( h \) = height of the building - \( d \) = initial distance from the building From the first position: \[ \tan(19^\circ) = \frac{h}{d} \quad \Rightarrow \quad h = d \cdot \tan(19^\circ) \] After moving 120 m closer: \[ \tan(47^\circ) = \frac{h}{d - 120} \quad \Rightarrow \quad h = (d - 120) \cdot \tan(47^\circ) \] Setting the two equations for \( h \) equal: \[ d \cdot \tan(19^\circ) = (d - 120) \cdot \tan(47^\circ) \] Solving for \( d \): \[ d (\tan(19^\circ) - \tan(47^\circ)) = -120 \cdot \tan(47^\circ) \] \[ d = \frac{120 \cdot \tan(47^\circ)}{\tan(47^\circ) - \tan(19^\circ)} \] Calculating the values: \[ \tan(19^\circ) \approx 0.3443 \] \[ \tan(47^\circ) \approx 1.0724 \] \[ d \approx \frac{120 \times 1.0724}{1.0724 - 0.3443} \approx \frac{128.688}{0.7281} \approx 176.78 \, \text{m} \] Now, finding the height \( h \): \[ h = 176.78 \times 0.3443 \approx 60.8 \, \text{m} \] **Answer:** The height of the building is approximately **61 meters**. --- ### **Problem 10** **If the angle of elevation of the top of a vertical 30 m high aerial is \(32^\circ\), how far is it to the aerial?** **Solution:** Let: - \( h = 30 \, \text{m} \) (height of the aerial) - \( d \) = horizontal distance to the aerial Using the tangent function: \[ \tan(32^\circ) = \frac{30}{d} \quad \Rightarrow \quad d = \frac{30}{\tan(32^\circ)} \] Calculating the value: \[ \tan(32^\circ) \approx 0.6249 \] \[ d \approx \frac{30}{0.6249} \approx 48.0 \, \text{m} \] **Answer:** The distance to the aerial is approximately **48 meters**. --- ### **Problem 11** **A flagpole stands on the edge of the top of a building. At a point 200 m from the building, the angles of elevation to the top and bottom of the pole are \(32^\circ\) and \(30^\circ\) respectively. Calculate the height of the flagpole.** **Solution:** Let: - \( H \) = height of the building - \( F \) = height of the flagpole - Distance from the observation point to the building = 200 m From the angles: \[ \tan(30^\circ) = \frac{H}{200} \quad \Rightarrow \quad H = 200 \cdot \tan(30^\circ) \approx 200 \times 0.5774 \approx 115.47 \, \text{m} \] \[ \tan(32^\circ) = \frac{H + F}{200} \quad \Rightarrow \quad H + F = 200 \cdot \tan(32^\circ) \approx 200 \times 0.6249 \approx 124.98 \, \text{m} \] Subtracting the two equations to find \( F \): \[ F = 124.98 \, \text{m} - 115.47 \, \text{m} \approx 9.51 \, \text{m} \] **Answer:** The height of the flagpole is approximately **9.5 meters**. --- ### **Problem 12** **If \( \tan(x) = 1.5276 \), determine \( \sec(x) \), \( \csc(x) \), and \( \cot(x) \). Assume \( x \) is an acute angle.** **Solution:** Given: \[ \tan(x) = 1.5276 \] 1. **Find \( \sec(x) \):** \[ \sec(x) = \frac{1}{\cos(x)} \] First, find \( \cos(x) \): \[ \cos(x) = \frac{1}{\sqrt{1 + \tan^2(x)}} = \frac{1}{\sqrt{1 + (1.5276)^2}} \approx \frac{1}{\sqrt{3.3345}} \approx 0.5472 \] Thus, \[ \sec(x) \approx \frac{1}{0.5472} \approx 1.8305 \] 2. **Find \( \csc(x) \):** \[ \csc(x) = \frac{1}{\sin(x)} = \frac{\sqrt{1 + \tan^2(x)}}{\tan(x)} \approx \frac{1.8255}{1.5276} \approx 1.1943 \] 3. **Find \( \cot(x) \):** \[ \cot(x) = \frac{1}{\tan(x)} = \frac{1}{1.5276} \approx 0.6547 \] **Answers:** - \( \sec(x) \approx 1.8305 \) - \( \csc(x) \approx 1.1973 \) - \( \cot(x) \approx 0.6547 \) ---

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the first problem about the building, you can use the tangent function. For the initial position, let \( h \) be the height of the building. From the first angle of elevation, you have \( \tan(19^{\circ}) = \frac{h}{d} \). After moving 120 m closer, the new equation is \( \tan(47^{\circ}) = \frac{h}{d - 120} \). Now you can solve these two equations simultaneously to find the height \( h \). As for the 30 m high aerial, you can again use the tangent function. The distance to the aerial can be calculated using the formula \( \tan(32^{\circ}) = \frac{30}{d} \). Rearranging gives \( d = \frac{30}{\tan(32^{\circ})} \). Just plug in the value for \( \tan(32^{\circ}) \) to find how far you are from the aerial!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad