Responder
**Problem 9:** The building is approximately **61 meters** tall.
**Problem 10:** The aerial is approximately **48 meters** away.
**Problem 11:** The flagpole is approximately **9.5 meters** high.
**Problem 12:**
- \( \sec(x) \approx 1.83 \)
- \( \csc(x) \approx 1.19 \)
- \( \cot(x) \approx 0.65 \)
Solución
Let's solve each of the problems step-by-step.
---
### **Problem 9**
**A surveyor measures the angle of elevation to the top of a perpendicular building as \(19^\circ\). He moves 120 m closer to the building and finds the angle of elevation is now \(47^\circ\). Determine the height of the building.**
**Solution:**
Let:
- \( h \) = height of the building
- \( d \) = initial distance from the building
From the first position:
\[
\tan(19^\circ) = \frac{h}{d} \quad \Rightarrow \quad h = d \cdot \tan(19^\circ)
\]
After moving 120 m closer:
\[
\tan(47^\circ) = \frac{h}{d - 120} \quad \Rightarrow \quad h = (d - 120) \cdot \tan(47^\circ)
\]
Setting the two equations for \( h \) equal:
\[
d \cdot \tan(19^\circ) = (d - 120) \cdot \tan(47^\circ)
\]
Solving for \( d \):
\[
d (\tan(19^\circ) - \tan(47^\circ)) = -120 \cdot \tan(47^\circ)
\]
\[
d = \frac{120 \cdot \tan(47^\circ)}{\tan(47^\circ) - \tan(19^\circ)}
\]
Calculating the values:
\[
\tan(19^\circ) \approx 0.3443
\]
\[
\tan(47^\circ) \approx 1.0724
\]
\[
d \approx \frac{120 \times 1.0724}{1.0724 - 0.3443} \approx \frac{128.688}{0.7281} \approx 176.78 \, \text{m}
\]
Now, finding the height \( h \):
\[
h = 176.78 \times 0.3443 \approx 60.8 \, \text{m}
\]
**Answer:** The height of the building is approximately **61 meters**.
---
### **Problem 10**
**If the angle of elevation of the top of a vertical 30 m high aerial is \(32^\circ\), how far is it to the aerial?**
**Solution:**
Let:
- \( h = 30 \, \text{m} \) (height of the aerial)
- \( d \) = horizontal distance to the aerial
Using the tangent function:
\[
\tan(32^\circ) = \frac{30}{d} \quad \Rightarrow \quad d = \frac{30}{\tan(32^\circ)}
\]
Calculating the value:
\[
\tan(32^\circ) \approx 0.6249
\]
\[
d \approx \frac{30}{0.6249} \approx 48.0 \, \text{m}
\]
**Answer:** The distance to the aerial is approximately **48 meters**.
---
### **Problem 11**
**A flagpole stands on the edge of the top of a building. At a point 200 m from the building, the angles of elevation to the top and bottom of the pole are \(32^\circ\) and \(30^\circ\) respectively. Calculate the height of the flagpole.**
**Solution:**
Let:
- \( H \) = height of the building
- \( F \) = height of the flagpole
- Distance from the observation point to the building = 200 m
From the angles:
\[
\tan(30^\circ) = \frac{H}{200} \quad \Rightarrow \quad H = 200 \cdot \tan(30^\circ) \approx 200 \times 0.5774 \approx 115.47 \, \text{m}
\]
\[
\tan(32^\circ) = \frac{H + F}{200} \quad \Rightarrow \quad H + F = 200 \cdot \tan(32^\circ) \approx 200 \times 0.6249 \approx 124.98 \, \text{m}
\]
Subtracting the two equations to find \( F \):
\[
F = 124.98 \, \text{m} - 115.47 \, \text{m} \approx 9.51 \, \text{m}
\]
**Answer:** The height of the flagpole is approximately **9.5 meters**.
---
### **Problem 12**
**If \( \tan(x) = 1.5276 \), determine \( \sec(x) \), \( \csc(x) \), and \( \cot(x) \). Assume \( x \) is an acute angle.**
**Solution:**
Given:
\[
\tan(x) = 1.5276
\]
1. **Find \( \sec(x) \):**
\[
\sec(x) = \frac{1}{\cos(x)}
\]
First, find \( \cos(x) \):
\[
\cos(x) = \frac{1}{\sqrt{1 + \tan^2(x)}} = \frac{1}{\sqrt{1 + (1.5276)^2}} \approx \frac{1}{\sqrt{3.3345}} \approx 0.5472
\]
Thus,
\[
\sec(x) \approx \frac{1}{0.5472} \approx 1.8305
\]
2. **Find \( \csc(x) \):**
\[
\csc(x) = \frac{1}{\sin(x)} = \frac{\sqrt{1 + \tan^2(x)}}{\tan(x)} \approx \frac{1.8255}{1.5276} \approx 1.1943
\]
3. **Find \( \cot(x) \):**
\[
\cot(x) = \frac{1}{\tan(x)} = \frac{1}{1.5276} \approx 0.6547
\]
**Answers:**
- \( \sec(x) \approx 1.8305 \)
- \( \csc(x) \approx 1.1973 \)
- \( \cot(x) \approx 0.6547 \)
---
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución