Pregunta
upstudy study bank question image url

Question Find the foci of the hyperbola defined \( \frac{(x-3)^{2}}{16}-\frac{(y+2)^{2}}{49}=1 \). If necessary, ro nearest tenth.

Ask by Bernard Young. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The foci of the hyperbola are at (11.1, -2) and (-5.1, -2).

Solución

To find the foci of the hyperbola defined by: \[ \frac{(x - 3)^2}{16} - \frac{(y + 2)^2}{49} = 1 \] we can follow these steps: 1. **Identify the Standard Form:** The given equation is in the standard form of a horizontal hyperbola: \[ \frac{(x - h)^2}{a^2} - \frac{(y - k)^2}{b^2} = 1 \] Comparing, we have: - Center \((h, k) = (3, -2)\) - \(a^2 = 16 \Rightarrow a = 4\) - \(b^2 = 49 \Rightarrow b = 7\) 2. **Calculate the Distance to the Foci (\(c\)):** The relationship between \(a\), \(b\), and \(c\) for a hyperbola is: \[ c = \sqrt{a^2 + b^2} \] Plugging in the values: \[ c = \sqrt{16 + 49} = \sqrt{65} \approx 8.062 \] 3. **Determine the Coordinates of the Foci:** For a horizontal hyperbola, the foci are located at \((h \pm c, k)\). Thus: - First focus: \( (3 + 8.062, -2) \approx (11.1, -2) \) - Second focus: \( (3 - 8.062, -2) \approx (-5.1, -2) \) **Final Answer:** The foci are at ( 11.1, –2 ) and ( –5.1, –2 ).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the foci of the hyperbola defined by the equation \( \frac{(x-3)^{2}}{16}-\frac{(y+2)^{2}}{49}=1 \), we first identify the center, which is at the point (3, -2). The values of \( a^2 \) and \( b^2 \) can be read directly from the equation: \( a^2 = 16 \) (so \( a = 4 \)) and \( b^2 = 49 \) (thus \( b = 7 \)). Next, we calculate \( c \), where \( c^2 = a^2 + b^2 \). This gives us \( c^2 = 16 + 49 = 65 \), so \( c = \sqrt{65} \approx 8.1 \). The foci are located at \( (h \pm c, k) = (3 \pm 8.1, -2) \), which means the foci are approximately at \( (11.1, -2) \) and \( (-5.1, -2) \). For a touch of historical flair, hyperbolas were studied by ancient Greeks, and they played a crucial role in celestial navigation and predicting orbits of celestial bodies. The term "hyperbola" itself comes from the Greek word "hyperbolē," meaning "excess" or "to throw beyond," highlighting how this curve reaches infinity and defines the boundaries of certain behaviors in mathematics and physics. If you're looking to dive deeper into hyperbolas, consider "Analytic Geometry" by Gordon Fuller for a comprehensive exploration of curves and conics. Another great read is "Conics" by Patrick Suppes, which touches on different conic sections and delves into both their mathematical properties and real-world applications, including navigation and architecture. Happy reading!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad