Pregunta
upstudy study bank question image url

In an arithmetic sequence \( T_{1}=(1-x)^{2} \) and \( T_{2}=1+x^{2}: \) a) Write down an expression for the common difference in terms of \( x \). b) Determine the value(s) of \( x \) if \( S_{10}=310 \).

Ask by Jimenez Wheeler. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**a)** The common difference is \( d = 2x \). **b)** The values of \( x \) are 3 and -10.

Solución

Let's solve the problem step by step. ### Part (a): Common Difference In an arithmetic sequence, the common difference \( d \) is the difference between consecutive terms. Given: - \( T_{1} = (1 - x)^2 \) - \( T_{2} = 1 + x^2 \) The common difference \( d \) is: \[ d = T_{2} - T_{1} = (1 + x^2) - (1 - x)^2 \] Expanding \( (1 - x)^2 \): \[ (1 - x)^2 = 1 - 2x + x^2 \] Substituting back: \[ d = 1 + x^2 - (1 - 2x + x^2) = 1 + x^2 - 1 + 2x - x^2 = 2x \] **Answer to Part (a):** \[ d = 2x \] ### Part (b): Determining \( x \) When \( S_{10} = 310 \) The sum of the first \( n \) terms of an arithmetic sequence is given by: \[ S_n = \frac{n}{2} [2a + (n-1)d] \] where \( a = T_{1} = (1 - x)^2 \) and \( d = 2x \). For \( n = 10 \) and \( S_{10} = 310 \): \[ 310 = \frac{10}{2} [2(1 - x)^2 + 9(2x)] \] \[ 310 = 5 [2(1 - 2x + x^2) + 18x] \] \[ 310 = 5 [2 + 14x + 2x^2] \] \[ 310 = 10x^2 + 70x + 10 \] \[ 10x^2 + 70x + 10 - 310 = 0 \] \[ 10x^2 + 70x - 300 = 0 \] Divide the entire equation by 10: \[ x^2 + 7x - 30 = 0 \] Solving the quadratic equation: \[ x = \frac{-7 \pm \sqrt{49 + 120}}{2} = \frac{-7 \pm \sqrt{169}}{2} = \frac{-7 \pm 13}{2} \] Thus, the solutions are: \[ x = \frac{6}{2} = 3 \quad \text{and} \quad x = \frac{-20}{2} = -10 \] **Answer to Part (b):** \[ x = 3 \quad \text{and} \quad x = -10 \] ### Final Answer **a)** The common difference is \( d = 2x \). **b)** The possible values of \( x \) are \( x = 3 \) and \( x = -10 \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the common difference \( d \) of the arithmetic sequence where \( T_1 = (1-x)^2 \) and \( T_2 = 1+x^2 \), we calculate \( d = T_2 - T_1 \). This gives us: \[ d = (1 + x^2) - (1 - 2x + x^2) = 2x \] Now, for part (b), the sum of the first 10 terms \( S_{10} \) of an arithmetic sequence can be calculated with the formula: \[ S_n = \frac{n}{2} \times (2a + (n-1)d) \] Here, \( a = T_1 = (1-x)^2 \), \( d = 2x \), and \( n = 10 \). Plugging those into the formula gives: \[ S_{10} = \frac{10}{2} \times (2(1-x)^2 + 9(2x)) = 5 \times (2(1-x)^2 + 18x) \] Setting \( S_{10} = 310 \): \[ 5 \times (2(1-x)^2 + 18x) = 310 \] Dividing both sides by 5: \[ 2(1-x)^2 + 18x = 62 \] Expanding the first term: \[ 2(1 - 2x + x^2) + 18x = 62 \] \[ 2 - 4x + 2x^2 + 18x = 62 \] Combining like terms gives: \[ 2x^2 + 14x + 2 - 62 = 0 \] \[ 2x^2 + 14x - 60 = 0 \] Dividing the whole equation by 2 simplifies it to: \[ x^2 + 7x - 30 = 0 \] Factoring gives: \[ (x + 10)(x - 3) = 0 \] Thus, \( x = -10 \) or \( x = 3 \).

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad