The formula for continuously compounded interest is given by \( A=P e^{r t} \), where \( A \) is the account balance, \( P \) is the principal, \( r \) is the annual interest rate (expressed as a decimal), and \( t \) is the time in years. If \( \$ 5000 \) is deposited into an account earning an annual interest rate of \( 2.5 \% \), compounded continuously, then what is the account balance after 8 years? Round your answer to the nearest dollar and do not include the \( \$ \) symbol in your answer.
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To calculate the account balance after 8 years with continuously compounded interest, we can plug the values into the formula \( A = P e^{r t} \). Here, - \( P = 5000 \) - \( r = 0.025 \) (2.5% expressed as a decimal) - \( t = 8 \) Now, substituting the values: \[ A = 5000 \cdot e^{0.025 \cdot 8} \\ A \approx 5000 \cdot e^{0.2} \\ A \approx 5000 \cdot 1.2214 \\ A \approx 6107 \] So the account balance after 8 years is approximately 6107.