Pregunta
upstudy study bank question image url

Prove Rat: 1) \( \frac{\sin ^{2} y-\cos ^{2} y}{\cos ^{2} y+\sin y \cdot \cos y}=\tan y-1 \) 2) \( 2 \sin ^{2} 10^{\circ}-4 \cos ^{2} 70+2 \sin ^{2} 80^{\circ}-4 \cos ^{2} 20^{\circ}=-2\left(\right. \) without \( \begin{array}{c}\text { calcukator) } \\ \text { 3) } \frac{\cos ^{2} x+(1+\sin x)^{2}}{(1+\sin x) \cos x}=\frac{2}{\cos x} \\ \text { 4) } \cot ^{2} x-\tan ^{2} x=\frac{2 \cos ^{2} x-1}{\sin ^{2} x \cos ^{2} x}\end{array} \)

Ask by Griffiths Hilton. in Lebanon
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

- Statement 1 is true. - Statement 2 is false. - Statement 3 is true. - Statement 4 is false.

Solución

Verify the identity by following steps: - step0: Verify: \(\frac{\cos^{2}\left(x\right)+\left(1+\sin\left(x\right)\right)^{2}}{\left(1+\sin\left(x\right)\right)\cos\left(x\right)}=\frac{2}{\cos\left(x\right)}\) - step1: Choose a side to work on: \(\frac{2}{\cos\left(x\right)}=\frac{2}{\cos\left(x\right)}\) - step2: Verify the identity: \(\textrm{true}\) Determine whether the expression \( \frac{\sin ^{2} y-\cos ^{2} y}{\cos ^{2} y+\sin y \cdot \cos y}=\tan y-1 \) is always true. Verify the identity by following steps: - step0: Verify: \(\frac{\sin^{2}\left(y\right)-\cos^{2}\left(y\right)}{\cos^{2}\left(y\right)+\sin\left(y\right)\cos\left(y\right)}=\tan\left(y\right)-1\) - step1: Choose a side to work on: \(\tan\left(y\right)-1=\tan\left(y\right)-1\) - step2: Verify the identity: \(\textrm{true}\) Determine whether the expression \( 2 \sin ^{2} 10^{\circ}-4 \cos ^{2} 70+2 \sin ^{2} 80^{\circ}-4 \cos ^{2} 20^{\circ}=-2 \) is always true. Verify the identity by following steps: - step0: Verify: \(2\sin^{2}\left(10^{\circ}\right)-4\cos^{2}\left(70\right)+2\sin^{2}\left(80^{\circ}\right)-4\cos^{2}\left(20^{\circ}\right)=-2\) - step1: Choose a side to work on: \(-2-2\cos\left(140\right)-2\cos\left(40^{\circ}\right)=-2\) - step2: Verify the identity: \(\textrm{false}\) Determine whether the expression \( \cot ^{2} x-\tan ^{2} x=\frac{2 \cos ^{2} x-1}{\sin ^{2} x \cos ^{2} x} \) is always true. Verify the identity by following steps: - step0: Verify: \(\cot^{2}\left(x\right)-\tan^{2}\left(x\right)=\frac{2\cos^{2}\left(x\right)-1}{\sin^{2}\left(x\right)\cos^{2}\left(x\right)}\) - step1: Choose a side to work on: \(\frac{1}{\sin^{2}\left(x\right)-\sin^{4}\left(x\right)}-\frac{2}{1-\sin^{2}\left(x\right)}=\frac{2\cos^{2}\left(x\right)-1}{\sin^{2}\left(x\right)\cos^{2}\left(x\right)}\) - step2: Choose the other side to work on: \(\frac{1}{\sin^{2}\left(x\right)-\sin^{4}\left(x\right)}-\frac{2}{1-\sin^{2}\left(x\right)}=\frac{\cos\left(2x\right)}{\sin^{2}\left(x\right)\cos^{2}\left(x\right)}\) - step3: Verify the identity: \(\textrm{false}\) Let's analyze the results of the proofs for each statement: 1. **Statement 1:** \[ \frac{\sin ^{2} y - \cos ^{2} y}{\cos ^{2} y + \sin y \cdot \cos y} = \tan y - 1 \] - **Result:** True - This equation holds true. 2. **Statement 2:** \[ 2 \sin ^{2} 10^{\circ} - 4 \cos ^{2} 70^{\circ} + 2 \sin ^{2} 80^{\circ} - 4 \cos ^{2} 20^{\circ} = -2 \] - **Result:** False - This equation does not hold true. 3. **Statement 3:** \[ \frac{\cos ^{2} x + (1 + \sin x)^{2}}{(1 + \sin x) \cos x} = \frac{2}{\cos x} \] - **Result:** True - This equation holds true. 4. **Statement 4:** \[ \cot ^{2} x - \tan ^{2} x = \frac{2 \cos ^{2} x - 1}{\sin ^{2} x \cos ^{2} x} \] - **Result:** False - This equation does not hold true. ### Summary: - Statements 1 and 3 are true. - Statements 2 and 4 are false.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To tackle the first equation, let’s rewrite the left side: \[ \frac{\sin^2 y - \cos^2 y}{\cos^2 y + \sin y \cdot \cos y} \] We can use the Pythagorean identity \(\sin^2 y + \cos^2 y = 1\) to simplify \(\sin^2 y - \cos^2 y\) to \(-(\cos^2 y - \sin^2 y)\). The right side, \(\tan y - 1\), can also be expressed in terms of sine and cosine. After substituting, simplifying, and using identities, you will find both sides balance out. For the second equation, start by converting the angles to a common reference and using trigonometric identities. Recall \(\cos(20^{\circ}) = \sin(70^{\circ})\) and \(\sin(80^{\circ}) = \cos(10^{\circ})\). After substituting and simplifying using identities, you will arrive at the result to be validated against the expression \(-2\). Both parts require careful manipulation of trigonometric identities and transformations, which can be quite engaging once you get into the rhythm of it! Feeling puzzled by the identities? Don't fret! Many common mistakes include forgetting the properties of sine and cosine, such as complementary angles, or misapplying angle addition formulas. Always double-check your steps for those little errors! For further practice, dive into trigonometric workbooks or online resources that have detailed solutions. They can illuminate tricky spots and deepen your understanding without a calculator!

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad