Pregunta
upstudy study bank question image url

4) \( \begin{array}{r}-7 x-2 y=-17 \\ -14 x+6 y=16\end{array} \)

Ask by Valdez Dawson. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution is \( x=1 \) and \( y=5 \).

Solución

Solve the system of equations \( -7x-2y=-17;-14x+6y=16 \). Solve the system of equations by following steps: - step0: Solve using the substitution method: \(\left\{ \begin{array}{l}-7x-2y=-17\\-14x+6y=16\end{array}\right.\) - step1: Solve the equation: \(\left\{ \begin{array}{l}x=\frac{17-2y}{7}\\-14x+6y=16\end{array}\right.\) - step2: Substitute the value of \(x:\) \(-14\times \frac{17-2y}{7}+6y=16\) - step3: Simplify: \(-34+10y=16\) - step4: Move the constant to the right side: \(10y=16+34\) - step5: Add the numbers: \(10y=50\) - step6: Divide both sides: \(\frac{10y}{10}=\frac{50}{10}\) - step7: Divide the numbers: \(y=5\) - step8: Substitute the value of \(y:\) \(x=\frac{17-2\times 5}{7}\) - step9: Simplify: \(x=1\) - step10: Calculate: \(\left\{ \begin{array}{l}x=1\\y=5\end{array}\right.\) - step11: Check the solution: \(\left\{ \begin{array}{l}x=1\\y=5\end{array}\right.\) - step12: Rewrite: \(\left(x,y\right) = \left(1,5\right)\) The solution to the system of equations is \( (x, y) = (1, 5) \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To solve the system of equations, let's simplify and manipulate the equations. Start with the first equation and isolate one of the variables: 1. From the first equation: \(-7x - 2y = -17\) Rearranging gives \(2y = -7x + 17\) or \(y = -\frac{7}{2}x + \frac{17}{2}\). 2. Now, use the second equation: \(-14x + 6y = 16\). Substitute \(y\) from the first equation into this equation: \(-14x + 6(-\frac{7}{2}x + \frac{17}{2}) = 16\). Distributing gives: \(-14x - 21x + 51 = 16\). Combine like terms: \(-35x + 51 = 16\). Subtract 51 from both sides: \(-35x = -35\). Divide by \(-35\): \(x = 1\). 3. Now substitute \(x = 1\) back into the equation for \(y\): \(y = -\frac{7}{2}(1) + \frac{17}{2} = -\frac{7}{2} + \frac{17}{2} = \frac{10}{2} = 5\). Thus, the solution to the system of equations is \(x = 1\) and \(y = 5\). --- Now that you have your answer, did you know that systems of equations were used in ancient civilizations? Babylonians were already solving linear equations around 2000 BC! They had methods that surprisingly look similar to our algebraic approaches today. Also, in the real world, solving systems can be incredibly useful! Think about budgeting: if you are balancing incomes and expenses from multiple sources, understanding how each variable impacts your overall budget is a system of equations in action. Mastering this can help keep your financial plans on track!

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad