Pregunta
upstudy study bank question image url

- Simplipy \( \frac{6 \sqrt{2 x^{8}}-2 \sqrt{8 x^{8}}}{\sqrt{8 x^{8}}} \) without the use of a calu

Ask by Daniels Lang. in South Africa
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The simplified result is \(1\).

Solución

Certainly! Let's simplify the expression step by step without using a calculator: \[ \frac{6 \sqrt{2 x^{8}} - 2 \sqrt{8 x^{8}}}{\sqrt{8 x^{8}}} \] ### Step 1: Simplify the Square Roots First, notice that \( x^{8} \) is a perfect square since \( x^{8} = (x^{4})^{2} \). Also, simplify the constants inside the square roots. 1. **Simplify \( \sqrt{2 x^{8}} \):** \[ \sqrt{2 x^{8}} = \sqrt{2} \cdot \sqrt{x^{8}} = \sqrt{2} \cdot x^{4} \] 2. **Simplify \( \sqrt{8 x^{8}} \):** \[ \sqrt{8 x^{8}} = \sqrt{8} \cdot \sqrt{x^{8}} = \sqrt{4 \cdot 2} \cdot x^{4} = \sqrt{4} \cdot \sqrt{2} \cdot x^{4} = 2 \sqrt{2} \cdot x^{4} \] ### Step 2: Substitute the Simplified Terms Back into the Expression Replace the square roots in the original expression with their simplified forms: \[ \frac{6 \cdot (\sqrt{2} \cdot x^{4}) - 2 \cdot (2 \sqrt{2} \cdot x^{4})}{2 \sqrt{2} \cdot x^{4}} \] ### Step 3: Distribute the Constants Multiply the constants outside the parentheses: \[ \frac{6 \sqrt{2} x^{4} - 4 \sqrt{2} x^{4}}{2 \sqrt{2} x^{4}} \] ### Step 4: Combine Like Terms in the Numerator Subtract the terms in the numerator: \[ \frac{(6 \sqrt{2} x^{4} - 4 \sqrt{2} x^{4})}{2 \sqrt{2} x^{4}} = \frac{2 \sqrt{2} x^{4}}{2 \sqrt{2} x^{4}} \] ### Step 5: Simplify the Fraction Notice that the numerator and the denominator are identical: \[ \frac{2 \sqrt{2} x^{4}}{2 \sqrt{2} x^{4}} = 1 \] ### Final Answer \[ 1 \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To simplify the expression \( \frac{6 \sqrt{2 x^{8}}-2 \sqrt{8 x^{8}}}{\sqrt{8 x^{8}}} \), let's break it down step by step. First, simplify each square root. We know that \( \sqrt{8 x^{8}} = \sqrt{8} \cdot \sqrt{x^{8}} = 2\sqrt{2} \cdot x^4 \). Similarly, \( \sqrt{2 x^{8}} = \sqrt{2} \cdot x^4 \). Now substituting back into the expression, we have: \[ \frac{6 \sqrt{2} x^4 - 2 (2\sqrt{2} x^4)}{2\sqrt{2} x^4} = \frac{6 \sqrt{2} x^4 - 4 \sqrt{2} x^4}{2\sqrt{2} x^4} \] Now combine like terms in the numerator: \[ \frac{(6\sqrt{2} - 4\sqrt{2}) x^4}{2\sqrt{2} x^4} = \frac{2\sqrt{2} x^4}{2\sqrt{2} x^4} = 1. \] So, the simplified expression is \( 1 \). There's a rich mathematical history to square roots and simplification! The concept of square roots dates back to ancient civilizations, including the Babylonians, who had methods for approximating them. The Pythagorean theorem, developed by the Greeks, relies heavily on understanding squares and roots, laying the foundation for algebra and geometry. When solving problems like this, a common mistake is to lose track of the variables or coefficients during simplification. Always double-check your work by ensuring each term is correctly combined or reduced. Also, keep an eye out for potential simplifications early on—clearly separating constants from variables can save time and prevent errors!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad