Pregunta
upstudy study bank question image url

10. The annual sales for a restaurant are \( \$ 579,000 \) and are increasing at a rate of \( 3 \% \) per year. a) Write the exponential function b) What will be the approximate sales in 9 years? Round your answer to the nearest dollar.

Ask by Salinas Bond. in the United States
Jan 22,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

a) The exponential function is \( S(t) = 579,000 \times 1.03^t \). b) The approximate sales in 9 years will be \$755,183.

Solución

Sure, let's tackle each part of the problem step by step. ### **a) Writing the Exponential Function** When dealing with exponential growth, the general form of the function is: \[ P(t) = P_0 \times (1 + r)^t \] where: - \( P(t) \) is the amount after \( t \) years, - \( P_0 \) is the initial amount, - \( r \) is the growth rate (expressed as a decimal), - \( t \) is the time in years. Given: - **Initial annual sales (\( P_0 \))**: \$579,000 - **Growth rate (\( r \))**: 3% or 0.03 Plugging these values into the formula: \[ S(t) = 579{,}000 \times (1 + 0.03)^t \] \[ S(t) = 579{,}000 \times (1.03)^t \] **So, the exponential function is:** \[ \boxed{S(t) = 579{,}000 \times 1.03^t} \] ### **b) Calculating the Sales in 9 Years** We’ll use the exponential function from part (a) to find the sales after 9 years. \[ S(9) = 579{,}000 \times (1.03)^9 \] First, calculate \( (1.03)^9 \): \[ 1.03^9 \approx 1.304773 \] Now, multiply this factor by the initial sales: \[ S(9) \approx 579{,}000 \times 1.304773 \approx 755{,}182.687 \] Rounding to the nearest dollar: \[ S(9) \approx \$755{,}183 \] **So, the approximate sales in 9 years will be:** \[ \boxed{\$755{,}183} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To write the exponential function for the restaurant's annual sales, we can use the formula \( S(t) = S_0(1 + r)^t \), where \( S(t) \) is the sales at time \( t \), \( S_0 \) is the initial sales, \( r \) is the rate of increase, and \( t \) is the time in years. Here, \( S_0 = 579,000 \) and \( r = 0.03 \). This gives us the function: \[ S(t) = 579,000(1 + 0.03)^t \] or \[ S(t) = 579,000(1.03)^t. \] To find the approximate sales in 9 years, substitute \( t = 9 \) into the function: \[ S(9) = 579,000(1.03)^9 \approx 579,000(1.30477) \approx 754,126.27. \] Rounding to the nearest dollar, the approximate sales in 9 years will be \( \$ 754,126 \).

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad