Pregunta
Aultiply \( (x-4)(2 x+3) \) using the FOIL method. Select the answer choice howing the FOIL method products. B. \( (2 x+3)+(x-4)(2 x)+(2 x)(3) \) C. \( (x)(2 x)+3(x)+(-4)(2 x)+(-4)(3) \) D. \( (x-4)(2 x)+(x-4)(3) \)
Ask by John Franklin. in the United States
Jan 23,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
The correct answer is Option C: \( (x)(2x) + 3(x) + (-4)(2x) + (-4)(3) \).
Solución
To multiply \( (x - 4)(2x + 3) \) using the **FOIL** method, you apply the following steps:
1. **First**: Multiply the first terms in each binomial.
2. **Outer**: Multiply the outer terms.
3. **Inner**: Multiply the inner terms.
4. **Last**: Multiply the last terms in each binomial.
Let's break it down:
1. **First**: \( x \cdot 2x = 2x^2 \)
2. **Outer**: \( x \cdot 3 = 3x \)
3. **Inner**: \( -4 \cdot 2x = -8x \)
4. **Last**: \( -4 \cdot 3 = -12 \)
Combining these products, we get:
\[ 2x^2 + 3x - 8x - 12 \]
\[ = 2x^2 - 5x - 12 \]
**Matching this process to the answer choices:**
- **Option C** correctly represents the FOIL method by showing each of the four products:
\[
(x)(2x) + 3(x) + (-4)(2x) + (-4)(3)
\]
**Therefore, the correct answer is Option C.**
**Answer:**
C. \( (x)(2 x)+3(x)+(-4)(2 x)+(-4)(3) \)
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To use the FOIL method on \( (x-4)(2x+3) \), we take the First, Outer, Inner, and Last terms of each binomial. First, we multiply the First terms: \( x \cdot 2x = 2x^2 \). Next, we take the Outer terms: \( x \cdot 3 = 3x \). For the Inner terms, we have \( -4 \cdot 2x = -8x \), and lastly, the Last terms give us \( -4 \cdot 3 = -12 \). Combining these, the expression becomes \( 2x^2 + 3x - 8x - 12 \), which simplifies to \( 2x^2 - 5x - 12 \). Option C: \( (x)(2x) + 3(x) + (-4)(2x) + (-4)(3) \) shows the correct FOIL products, making it the correct choice!
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium