Pregunta
upstudy study bank question image url

9. Find the coordinates of each image point: a) \( D_{0,-2}:(1,3) \rightarrow(-2,-6) \) b) \( R_{o, 90^{\circ}}:(2,-4) \rightarrow(4,2) \) c) \( D_{(1,2), \frac{1}{2}}:(5,4) \rightarrow \) d) \( R_{(-2,-3),-90^{\circ}}:(2,-5) \rightarrow \)

Ask by Grant Allan. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The image points are: - **Part c:** \( (3, 3) \) - **Part d:** \( (-4, -7) \)

Solución

Let's solve each part of Problem 9 step by step. ### **Part c: \( D_{(1,2), \frac{1}{2}}:(5,4) \rightarrow \)** **Transformation Description:** - **Dilation (Scaling)** centered at point \( (1,2) \) with a scale factor of \( \frac{1}{2} \). **Steps to Find the Image Point:** 1. **Identify the center of dilation:** \( C = (1,2) \). 2. **Original point:** \( P = (5,4) \). 3. **Scale factor:** \( k = \frac{1}{2} \). 4. **Apply the dilation formula:** \[ P' = C + k \cdot (P - C) \] Breaking it down: \[ x' = 1 + \frac{1}{2} \cdot (5 - 1) = 1 + \frac{1}{2} \cdot 4 = 1 + 2 = 3 \] \[ y' = 2 + \frac{1}{2} \cdot (4 - 2) = 2 + \frac{1}{2} \cdot 2 = 2 + 1 = 3 \] **Image Point:** \[ (3, 3) \] --- ### **Part d: \( R_{(-2,-3),-90^{\circ}}:(2,-5) \rightarrow \) \** **Transformation Description:** - **Rotation** centered at point \( (-2,-3) \) by \( -90^\circ \) (which is a clockwise rotation of 90 degrees). **Steps to Find the Image Point:** 1. **Identify the center of rotation:** \( C = (-2,-3) \). 2. **Original point:** \( P = (2,-5) \). 3. **Angle of rotation:** \( \theta = -90^\circ \). 4. **Translate the original point to the origin:** \[ P_{\text{translated}} = (2 - (-2), -5 - (-3)) = (4, -2) \] 5. **Apply the rotation matrix for \( -90^\circ \):** \[ \begin{pmatrix} \cos(-90^\circ) & -\sin(-90^\circ) \\ \sin(-90^\circ) & \cos(-90^\circ) \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \] Applying to \( (4, -2) \): \[ x' = 0 \cdot 4 + 1 \cdot (-2) = -2 \] \[ y' = -1 \cdot 4 + 0 \cdot (-2) = -4 \] 6. **Translate back to the original center:** \[ P' = (-2 + (-2), -3 + (-4)) = (-4, -7) \] **Image Point:** \[ (-4, -7) \] --- ### **Summary of Image Points:** - **Part c:** \( (3, 3) \) - **Part d:** \( (-4, -7) \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the coordinates of each image point after applying the transformations, we can break down each transformation step by step. For problem a, where we have a dilation \( D_{0,-2} \) (which scales by a factor of -2), we apply this to the point \((1,3)\): - Each coordinate is multiplied by \(-2\): - \(x\): \(1 \times -2 = -2\) - \(y\): \(3 \times -2 = -6\) So, the image point is \((-2, -6)\), which matches the given transformation. For problem b, the point is rotated \(R_{0, 90^{\circ}}\) around the origin \((2, -4)\): - The rotation rule for \(90^{\circ}\) counterclockwise around the origin changes the coordinates \((x, y)\) to \((-y, x)\): - For \( (2, -4) \): - New \(x\): \(-(-4) = 4\) - New \(y\): \(2\) Thus, the image point is \((4, 2)\). For problem c, we apply a dilation \(D_{(1,2), \frac{1}{2}}\) (from the point \((1,2)\) scaling by factor \(\frac{1}{2}\)): - The new coordinates will be: - \(x' = 1 + \frac{1}{2}(5 - 1) = 1 + 2 = 3\) - \(y' = 2 + \frac{1}{2}(4 - 2) = 2 + 1 = 3\) So, the image point is \((3, 3)\). For problem d, we rotate the point \((2, -5)\) by \(-90^{\circ}\) around \((-2, -3)\): - To perform this transformation, we first translate the point to the origin by subtracting \((-2, -3)\): - Translate \((2, -5)\) to \((2 - (-2), -5 - (-3)) = (4, -2)\). - Now we apply the \(-90^{\circ}\) rotation (which transforms \((x,y)\) to \((y,-x)\)): - For \((4, -2)\), the rotated coordinates are \((-2, -4)\). - Then we translate back: - Final coordinates: \((-2 - 2, -4 - 3) = (-4, -7)\). So, the answers to the transformations are: c) \((3, 3)\) d) \((-4, -7)\)

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad