A 0.311 kg tennis racket moves east at \( 30.3 \mathrm{~m} / \mathrm{s} \). A 0.0570 kg ball moves east at \( 19.2 \mathrm{~m} / \mathrm{s} \). If the racket and the ball have an elastic collision, what would the velocity of the racket be afterwards? \[ v_{1 f}=[?] \mathrm{m} / \mathrm{s} \] Remember East is positive ( + ) : west is negative ( - ).
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find the final velocity of the tennis racket after the elastic collision, we can use the conservation of momentum and the equations for elastic collisions. Let: - \( m_1 = 0.311 \, \text{kg} \) (mass of the racket) - \( v_{1i} = 30.3 \, \text{m/s} \) (initial velocity of the racket) - \( m_2 = 0.0570 \, \text{kg} \) (mass of the ball) - \( v_{2i} = 19.2 \, \text{m/s} \) (initial velocity of the ball) Using the conservation of momentum: \[ m_1 v_{1i} + m_2 v_{2i} = m_1 v_{1f} + m_2 v_{2f} \] And the formula for the final velocities after an elastic collision: \[ v_{1f} = \frac{(m_1 - m_2)v_{1i} + 2m_2 v_{2i}}{m_1 + m_2} \] Plug in the values: \[ v_{1f} = \frac{(0.311 - 0.0570)(30.3) + 2(0.0570)(19.2)}{0.311 + 0.0570} \] Calculating: 1. \( (0.311 - 0.0570)(30.3) = (0.254)(30.3) \approx 7.6942 \) 2. \( 2(0.0570)(19.2) = 2(1.0944) \approx 2.1888 \) 3. Total momentum for racket: \( 7.6942 + 2.1888 \approx 9.883 \) 4. Total mass: \( 0.311 + 0.0570 = 0.368 \) Now, divide the total momentum by the total mass: \[ v_{1f} \approx \frac{9.883}{0.368} \approx 26.9 \, \text{m/s} \] So, the final velocity of the racket is approximately: \[ v_{1 f} \approx 26.9 \, \mathrm{m/s} \]