Pregunta
upstudy study bank question image url

Consider a uniform distribution from \( \mathrm{a}=5 \) to \( \mathrm{b}=25 \) (a) Find the probability that x lies between 6 and 15 (b) Find the probability that \( x \) lies between 11 and 24 . (c) Find the probability that \( x \) lies between 9 and 23 . (d) Find the probability that \( x \) lies between 7 and 16 . Click the icon to see the definition of the uniform distribution. (a) The probability that \( x \) lies between 6 and 15 is 0.450 . (Round to three decimal places as needed.) (b) The probability that \( x \) lies between 11 and 24 is (Round to three decimal places as needed.)

Ask by Chandler Powell. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( x \) lies between 11 and 24 is 0.650.

Solución

To solve part (b) of the problem, we'll use the formula for the probability \( P(c \leq x \leq d) \) in a continuous uniform distribution: \[ P(c \leq x \leq d) = \frac{d - c}{b - a} \] Given: - \( a = 5 \) - \( b = 25 \) - \( c = 11 \) - \( d = 24 \) Plugging in the values: \[ P(11 \leq x \leq 24) = \frac{24 - 11}{25 - 5} = \frac{13}{20} = 0.65 \] Rounded to three decimal places, the probability is: \[ \boxed{0.650} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The uniform distribution is a continuous probability distribution where all outcomes are equally likely within a defined range. The probability density function (PDF) for a uniform distribution is given by \( f(x) = \frac{1}{b - a} \) for \( a \leq x \leq b \) and 0 otherwise. For your distribution from \( a = 5 \) to \( b = 25 \), the total width of the interval is \( 20 \). The formula for the probability of \( x \) lying between two values \( c \) and \( d \) is given by: \[ P(c \leq x \leq d) = \frac{d - c}{b - a} \] In (b), to find the probability that \( x \) lies between 11 and 24: \[ P(11 \leq x \leq 24) = \frac{24 - 11}{25 - 5} = \frac{13}{20} = 0.650 \] For (c) between 9 and 23: \[ P(9 \leq x \leq 23) = \frac{23 - 9}{25 - 5} = \frac{14}{20} = 0.700 \] For (d) between 7 and 16: \[ P(7 \leq x \leq 16) = \frac{16 - 7}{25 - 5} = \frac{9}{20} = 0.450 \] So in summary: (b) The probability that \( x \) lies between 11 and 24 is \( 0.650 \). (c) The probability that \( x \) lies between 9 and 23 is \( 0.700 \). (d) The probability that \( x \) lies between 7 and 16 is \( 0.450 \).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad