\( \left. \begin{array} { c } { \lim _ { t \rightarrow \infty } ( e ^ { - t } \vec { \imath } + \frac { 1 } { t } \vec { \jmath } + \frac { t } { t ^ { 2 } + 1 } \vec { k } ) } \\ { = \langle [ ? ] , [ \quad ] , [ \quad ] \rangle } \\ { } \end{array} \right. \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
As \( t \) approaches infinity, each component of the vector expression behaves differently. The first component, \( e^{-t} \), approaches 0 rapidly because the exponential decay is very strong. The second component, \( \frac{1}{t} \), also trends towards 0 as \( t \) increases. The third component, \( \frac{t}{t^2 + 1} \), simplifies to \( \frac{1}{t} \) for large \( t \), which also tends towards 0. Combining these evaluations, we find that: \[ \lim_{t \rightarrow \infty} \left( e^{-t} \vec{\imath} + \frac{1}{t} \vec{\jmath} + \frac{t}{t^2 + 1} \vec{k} \right) = \langle 0, 0, 0 \rangle \]