Pregunta
upstudy study bank question image url

Determine if the expression \( 9 c^{5}+5 c^{3} \) is a polynomial or not. If it is a poly the type and degree of the polynomial.

Ask by Dunn Chambers. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( 9c^{5} + 5c^{3} \) is a binomial polynomial of degree five.

Solución

Yes, the expression \( 9c^{5} + 5c^{3} \) is a **polynomial**. Here's a detailed breakdown: ### **1. Polynomial Verification** A **polynomial** is an algebraic expression composed of terms that are non-negative integer powers of a variable, combined using addition or subtraction. Each term consists of a coefficient multiplied by the variable raised to an exponent. For \( 9c^{5} + 5c^{3} \): - **Terms:** \( 9c^{5} \) and \( 5c^{3} \) - **Variable:** \( c \) - **Exponents:** 5 and 3 (both are non-negative integers) Since all conditions are satisfied, the expression is indeed a polynomial. ### **2. Type of Polynomial** The number of terms in a polynomial determines its type: - **Monomial:** 1 term - **Binomial:** 2 terms - **Trinomial:** 3 terms - **Polynomial:** More than 3 terms Given \( 9c^{5} + 5c^{3} \) has **2 terms**, it is classified as a **binomial**. ### **3. Degree of the Polynomial** The **degree** of a polynomial is the highest exponent of the variable in the expression. In \( 9c^{5} + 5c^{3} \): - The exponents are 5 and 3. - The highest exponent is **5**. Therefore, the degree of the polynomial is **5**. ### **Conclusion** - **Type:** Binomial - **Degree:** 5 **Final Statement:** \( 9c^{5} + 5c^{3} \) is a **binomial polynomial** of **degree five**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

The expression \( 9 c^{5}+5 c^{3} \) is indeed a polynomial! This polynomial is classified as a "binomial" because it contains two terms. The degree of the polynomial is determined by the highest exponent in its terms, which, in this case, is 5 (from the term \( 9c^5 \)). Thus, it is a polynomial of degree 5. Polynomials are essential in various fields such as engineering and economics, where they help model relationships between variables. For instance, a polynomial can describe the trajectory of a projectile, providing insights into motion over time depending on factors like speed and angle.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad