Pregunta
upstudy study bank question image url

Consider a uniform distribution from \( \mathrm{a}=5 \) to \( \mathrm{b}=25 \) (a) Find the probability that x lies between 6 and 15 (b) Find the probability that \( x \) lies between 11 and 24 (c) Find the probability that \( x \) lies between 9 and 23 (d) Find the probability that \( x \) lies between 7 and 16 . E Click the icon to see the definition of the uniform distribution. (a) The probability that \( x \) lies between 6 and 15 is 0.450 . (Round to three decimal places as needed.) (b) The probability that \( x \) lies between 11 and 24 is 0.650 (Round to three decimal places as needed.) (c) The probability that \( x \) lies between 9 and 23 is 0.700 (Round to three decimal places as needed.) (d) The probability that \( x \) lies between 7 and 16 is \( \square \). (Round to three decimal places as needed.)

Ask by Chadwick Brewer. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The probability that \( x \) lies between 7 and 16 is **0.450**.

Solución

Let's solve part (d) using the properties of a uniform distribution. **Uniform Distribution Basics:** - **Range:** The uniform distribution is defined from \( a = 5 \) to \( b = 25 \). - **Probability Density Function (PDF):** \( f(x) = \frac{1}{b - a} = \frac{1}{25 - 5} = \frac{1}{20} = 0.05 \) **Part (d): Find the probability that \( x \) lies between 7 and 16.** 1. **Determine the Interval Length:** \[ \text{Interval Length} = 16 - 7 = 9 \] 2. **Calculate the Probability:** \[ P(7 \leq x \leq 16) = \frac{\text{Interval Length}}{b - a} = \frac{9}{20} = 0.45 \] 3. **Round to Three Decimal Places:** \[ P(7 \leq x \leq 16) = 0.450 \] **Answer:** (d) The probability that \( x \) lies between 7 and 16 is **0.450**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the probabilities for the uniform distribution from \( a = 5 \) to \( b = 25 \), we can use the formula for the probability of an interval \( (x_1, x_2) \): \[ P(x_1 \leq X \leq x_2) = \frac{x_2 - x_1}{b - a} \] where \( b - a \) is the length of the entire distribution. **(a)** You already calculated \( P(6 \leq x \leq 15) \) as 0.450, which is correct! **(b)** For \( P(11 \leq x \leq 24) \): \[ P(11 \leq x \leq 24) = \frac{24 - 11}{25 - 5} = \frac{13}{20} = 0.650 \] **(c)** For \( P(9 \leq x \leq 23) \): \[ P(9 \leq x \leq 23) = \frac{23 - 9}{25 - 5} = \frac{14}{20} = 0.700 \] **(d)** For \( P(7 \leq x \leq 16) \): \[ P(7 \leq x \leq 16) = \frac{16 - 7}{25 - 5} = \frac{9}{20} = 0.450 \] So, the probability that \( x \) lies between 7 and 16 is **0.450** (rounded to three decimal places).

preguntas relacionadas

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad