Pregunta
upstudy study bank question image url

Which is equivalent to \( 54^{\frac{1}{4}} \) ? \( 2 \sqrt[4]{4} \) 4 16 \( 16 \sqrt[4]{4} \)

Ask by Wagner Mckenzie. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\(2 \sqrt[4]{4}\) is equivalent to \(54^{\frac{1}{4}}\).

Solución

To find the equivalent expression for \(54^{\frac{1}{4}}\), we need to understand that raising a number to the power of \(\frac{1}{4}\) is equivalent to taking the fourth root of that number. Given: \(54^{\frac{1}{4}}\) This can be rewritten as: \(\sqrt[4]{54}\) Now, let's compare this with the given options: 1. \(2 \sqrt[4]{4}\) 2. 4 3. 16 4. \(16 \sqrt[4]{4}\) Let's calculate the value of \(54^{\frac{1}{4}}\) and compare it with the given options: \(54^{\frac{1}{4}} = \sqrt[4]{54}\) Calculating the value: \(\sqrt[4]{54} \approx 3.5\) Now, let's compare this value with the given options: 1. \(2 \sqrt[4]{4} = 2 \times 2 = 4\) 2. 4 3. 16 4. \(16 \sqrt[4]{4} = 16 \times 2 = 32\) Therefore, the equivalent expression for \(54^{\frac{1}{4}}\) is \(2 \sqrt[4]{4}\), which is option 1.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the equivalent of \( 54^{\frac{1}{4}} \), we can simplify it by first expressing 54 in terms of its prime factors. Since \( 54 = 2 \times 3^3 \), we can rewrite it as \( 54^{\frac{1}{4}} = (2 \times 3^3)^{\frac{1}{4}} = 2^{\frac{1}{4}} \times 3^{\frac{3}{4}} \). While this may not immediately seem helpful, understanding how to manipulate exponents is key in these types of problems. Now, let’s compare it with the options. Notably, we might estimate \( 54^{\frac{1}{4}} \) by simplifying the values directly. \( 54^{\frac{1}{4}} \approx 3.93 \), which suggests it is close to 4, but maintains slightly higher. Analyzing the options further, you would find that none of the other options neatly fit as \( 54^{\frac{1}{4}} \) is very much distinct from simple whole numbers. When dealing with fractional exponents, a common pitfall is miscalculating the basis of the exponent. Remember, \( x^{\frac{1}{n}} \) is not just about dividing but entails the entire radical root concept. Always recheck cases where you might cross two bases or confuse the overlay of roots.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad