Find the measure (in degrees, not equal to the given measure) of the least positive angle that is coterminal with A . \( \mathrm{A}=345^{\circ} \) (Simplify your answer.)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Extra Insights
To find a coterminal angle with \( A = 345^\circ \), you can subtract \( 360^\circ \) since angles that differ by \( 360^\circ \) are coterminal. So, \( 345^\circ - 360^\circ = -15^\circ \). Now, if you want the least positive angle that is coterminal with \( 345^\circ \), simply add \( 360^\circ \) to \( -15^\circ \): \(-15^\circ + 360^\circ = 345^\circ\). However, since you want an angle not equal to the given measure, we can use the subtraction step: The least positive angle that is coterminal with \( A \) is: \[ 345^\circ - 360^\circ = -15^\circ \text{ (not positive)} \] \[ \text{Next, to find another, add 360} \] \[ -15^\circ + 360^\circ = 345^\circ \text{ (equal to given)} \] Instead, let's correctly approach finding a positive angle alternate to \( 345^\circ \): Subtracting \( 360^\circ \) until you land positive: \( 345^\circ - 360^\circ = -15^\circ \) Finally: Thus, the least positive coterminal angle \( ≈ 345 - 15 = 330^\circ\). The least positive angle coterminal with \( A = 345^\circ \) is \( 330^\circ \).