Pregunta
upstudy study bank question image url

f1.app.edmentum.com TAKE MY Up - Ryne... Can't Ope... (C) ClassLink... (C) CCS Class... (G) in-Googl... Unit Postt... 18 Select the correct answer from each drop-down menu. The volume of a sphere whose diameter is 18 centimeters is \( \square \) \( \pi \) cubic centimeters. If its diameter were reduced by half, its volume would be \( \square \) of its original volume. Reset Next

Ask by Macdonald Mathis. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The volume of the sphere is \(972\pi\) cubic centimeters. If the diameter is reduced by half, the new volume is \(\frac{1}{8}\) of the original volume.

Solución

Let's solve the problem step by step. **1. Calculate the Volume of the Sphere with Diameter 18 cm:** The formula for the volume \( V \) of a sphere is: \[ V = \frac{4}{3} \pi r^3 \] where \( r \) is the radius of the sphere. Given: - Diameter \( d = 18 \) cm - Radius \( r = \frac{d}{2} = \frac{18}{2} = 9 \) cm Plugging the values into the formula: \[ V = \frac{4}{3} \pi (9)^3 = \frac{4}{3} \pi \times 729 = 972 \pi \text{ cubic centimeters} \] **First Blank:** \( 972 \) --- **2. Calculate the New Volume When the Diameter is Reduced by Half:** If the diameter is reduced by half: - New diameter \( d' = \frac{18}{2} = 9 \) cm - New radius \( r' = \frac{9}{2} = 4.5 \) cm New volume \( V' \): \[ V' = \frac{4}{3} \pi (4.5)^3 = \frac{4}{3} \pi \times 91.125 = 121.5 \pi \text{ cubic centimeters} \] To find how \( V' \) compares to the original volume \( V \): \[ \frac{V'}{V} = \frac{121.5 \pi}{972 \pi} = \frac{121.5}{972} = \frac{1}{8} \] **Second Blank:** \( \frac{1}{8} \) --- **Final Answer:** - **First Blank:** 972 - **Second Blank:** \(\frac{1}{8}\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the volume of a sphere, you can use the formula \( V = \frac{4}{3} \pi r^3 \). If the diameter is 18 centimeters, the radius \( r \) is half of that, so \( r = 9 \) cm. Calculating the volume gives \( V = \frac{4}{3} \pi (9)^3 = 3053.63 \) cubic centimeters, which can be written as \( 3053.63 \div \pi \). So, the answer is \( 3053.63/\pi \) cubic centimeters. Now, if the diameter is reduced by half, the new diameter is \( 9 \) cm and the new radius is \( 4.5 \) cm. The volume then becomes \( V' = \frac{4}{3} \pi (4.5)^3 = 94.25 \) cubic centimeters. To determine what fraction this new volume is of the original volume, simply find \( 94.25/(3053.63) \), which simplifies to \( 1/8 \). So the answer is \( 1/8 \) of its original volume.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad