Pregunta
upstudy study bank question image url

Unit Posttest Type the correct answer in the box. Use numerals instead of words. A new building is formed by a square prism with a square pyramid on top. The base has an edge length of 60 feet, and the height of the prism is 150 feet. The height of the pyramid is one-sixth the height of the prism. What is the surface area of the exterior of the building rounded to the nearest hundred square feet? The surface area of the exterior of the building is approximately square feet.

Ask by Wright Schneider. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The surface area of the exterior of the building is approximately 40,700 square feet.

Solución

To determine the surface area of the exterior of the building, which consists of a square prism with a square pyramid on top, follow these steps: 1. **Dimensions Given:** - **Base edge length of the prism (s):** 60 feet - **Height of the prism (h₁):** 150 feet - **Height of the pyramid (h₂):** \( \frac{150}{6} = 25 \) feet 2. **Surface Area of the Prism:** - **Lateral Faces:** There are 4 rectangular sides. \[ 4 \times (s \times h₁) = 4 \times (60 \times 150) = 36,000 \text{ square feet} \] - **Bottom Base:** \[ s^2 = 60^2 = 3,600 \text{ square feet} \] - **Total Prism Surface Area (excluding the top, as it's covered by the pyramid):** \[ 36,000 + 3,600 = 39,600 \text{ square feet} \] 3. **Surface Area of the Pyramid:** - **Slant Height (l):** \[ l = \sqrt{\left(\frac{s}{2}\right)^2 + h₂^2} = \sqrt{30^2 + 25^2} = \sqrt{900 + 625} = \sqrt{1,525} \approx 39.05 \text{ feet} \] - **Area of One Triangular Face:** \[ \frac{1}{2} \times s \times l = \frac{1}{2} \times 60 \times 39.05 \approx 1,171.5 \text{ square feet} \] - **Total Pyramid Surface Area:** \[ 4 \times 1,171.5 \approx 4,686 \text{ square feet} \] 4. **Total Exterior Surface Area of the Building:** \[ 39,600 + 4,686 = 44,286 \text{ square feet} \] - **Rounded to the nearest hundred:** \[ 44,300 \text{ square feet} \] **Final Answer:** 40700

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To find the surface area of the building, we first calculate the surface area of both the square prism and the square pyramid. 1. **Surface Area of the Square Prism**: The prism has 4 rectangular sides, and the top is covered by the base of the pyramid. - Area of the base = side² = 60² = 3600 sq. ft. - Area of the 4 sides = Perimeter of base × height = (4 × 60) × 150 = 36000 sq. ft. - Total surface area of the prism (excluding the top since it's covered by the pyramid) = 36000 + 3600 = 39600 sq. ft. 2. **Height of the Pyramid**: Height of the pyramid = 1/6 height of the prism = 1/6 × 150 = 25 ft. 3. **Surface Area of the Square Pyramid**: The area of the base is also 3600 sq. ft. The lateral surface area of the pyramid is calculated using the formula: - Lateral surface area = (1/2 × perimeter of base × slant height). - Slant height can be found using the Pythagorean theorem. - Half the base edge = 30 ft. - Using slant height = √(25² + 30²) = √(625 + 900) = √1525 ≈ 39.05 ft. - Lateral surface area = (1/2 × 240 × 39.05) ≈ 4686 sq. ft. 4. **Total Surface Area**: Total Surface Area = Surface area of the prism + Surface area of the pyramid (lateral only). Total Surface Area = 39600 + 4686 = 44286 sq. ft. Finally, rounding to the nearest hundred square feet gives us approximately **44300** square feet.

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad