Pregunta
upstudy study bank question image url

Evaluate the integral by interpreting it in terms of areas. \[ \int_{-7}^{0}\left(3+\sqrt{49-x^{2}}\right) d x \]

Ask by Welch Delgado. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The integral evaluates to \( 21 + \frac{49\pi}{4} \).

Solución

To evaluate the integral \[ \int_{-7}^{0}\left(3+\sqrt{49-x^{2}}\right) \, dx, \] we can interpret it in terms of geometric areas. 1. **Separate the Integral:** The integral can be split into two parts: \[ \int_{-7}^{0} 3 \, dx + \int_{-7}^{0} \sqrt{49 - x^2} \, dx. \] 2. **Evaluate the First Integral:** \[ \int_{-7}^{0} 3 \, dx = 3 \times (0 - (-7)) = 3 \times 7 = 21. \] This represents the area of a rectangle with height 3 and width 7. 3. **Evaluate the Second Integral:** \[ \int_{-7}^{0} \sqrt{49 - x^2} \, dx. \] The function \( \sqrt{49 - x^2} \) describes the upper semicircle of a circle with radius 7 centered at the origin. The integral from \(-7\) to \(0\) represents a quarter of the area of the full circle. - **Area of the Full Circle:** \( \pi r^2 = \pi \times 7^2 = 49\pi \). - **Quarter of the Circle:** \( \frac{49\pi}{4} \). 4. **Combine Both Areas:** \[ 21 + \frac{49\pi}{4}. \] Therefore, the value of the integral is: \[ 21 + \frac{49\,\pi}{4}. \] **Final Answer:** After simplifying, the integral is equal to 21 plus 49⁄4 times π. Thus, 21 + 49 π⁄4

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To evaluate the integral \(\int_{-7}^{0}\left(3+\sqrt{49-x^{2}}\right) d x\) in terms of areas, we can break it down into two distinct areas: 1. The term \(\sqrt{49-x^{2}}\) represents the upper half of a circle with radius 7 centered at the origin (the equation of the circle is \(x^2 + y^2 = 49\)). The area we need to consider is from \(x = -7\) to \(x = 0\), which is a quarter of this circle. The area of the entire circle is \(\pi r^2 = \pi (7^2) = 49\pi\). Therefore, the area of the quarter-circle is \(\frac{49\pi}{4}\). 2. The term \(3\) represents a rectangle with a base extending from \(-7\) to \(0\) (a length of 7 units) and a height of 3 units. The area of this rectangle is calculated as \( \text{Base} \times \text{Height} = 7 \times 3 = 21\). Now we can combine these areas to evaluate the integral: \[ \int_{-7}^{0}\left(3+\sqrt{49-x^{2}}\right) d x = \text{Area of Rectangle} + \text{Area of Quarter Circle} = 21 + \frac{49\pi}{4}. \] Thus, the value of the integral is: \[ \int_{-7}^{0}\left(3+\sqrt{49-x^{2}}\right) d x = 21 + \frac{49\pi}{4}. \]

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad