Pregunta
upstudy study bank question image url

Find the exact value of each of the following under the given conditions. \[ \sin \alpha=\frac{7}{25}, 0<\alpha<\frac{\pi}{2} ; \cos \beta=\frac{8 \sqrt{89}}{89},-\frac{\pi}{2}<\beta<0 \] (a) \( \sin (\alpha+\beta) \) (b) \( \cos (\alpha+\beta) \) (c) \( \sin (\alpha-\beta) \) (d) \( \tan (\alpha-\beta) \) (a) \( \sin (\alpha+\beta)=-\frac{64 \sqrt{89}}{2225} \) (Type an exact answer using radicals as needed. Rationalize all denominators. Use integers or fractions for any numbers in the expression. Simplify your answer.) (b) \( \cos (\alpha+\beta)=\frac{227 \sqrt{89}}{2225} \) (Type an exact answer using radicals as needed. Rationalize all denominators. Use integers or fractions for any numbers in the expression. Simplify your answer.) (c) \( \sin (\alpha-\beta)=\frac{176 \sqrt{89}}{2225} \) (Type an exact answer using radicals as needed. Rationalize all denominators. Use integers or fractions for any numbers in the expression. Simplify your answer.) (d) \( \boldsymbol{\operatorname { t a n }}(\alpha-\beta)= \) \( \square \) (Type an exact answer using radicals as needed. Rationalize all denominators. Use integers or fractions for any numbers in the expression. Simplify your answer.)

Ask by Estrada Boone. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( \tan(\alpha - \beta) = \frac{176}{157} \)

Solución

To find \( \tan(\alpha - \beta) \), we'll use the given information and trigonometric identities. ### Given: - \( \sin \alpha = \frac{7}{25} \), with \( 0 < \alpha < \frac{\pi}{2} \) (First Quadrant) - \( \cos \beta = \frac{8 \sqrt{89}}{89} \), with \( -\frac{\pi}{2} < \beta < 0 \) (Fourth Quadrant) ### Step 1: Find \( \cos \alpha \) and \( \sin \beta \) Since \( \sin^2 \alpha + \cos^2 \alpha = 1 \), \[ \cos \alpha = \sqrt{1 - \sin^2 \alpha} = \sqrt{1 - \left(\frac{7}{25}\right)^2} = \sqrt{1 - \frac{49}{625}} = \sqrt{\frac{576}{625}} = \frac{24}{25} \] For \( \beta \) in the fourth quadrant, \( \sin \beta \) is negative: \[ \sin \beta = -\sqrt{1 - \cos^2 \beta} = -\sqrt{1 - \left(\frac{8 \sqrt{89}}{89}\right)^2} = -\sqrt{1 - \frac{64 \times 89}{89^2}} = -\sqrt{\frac{25}{89}} = -\frac{5 \sqrt{89}}{89} \] ### Step 2: Compute \( \tan \alpha \) and \( \tan \beta \) \[ \tan \alpha = \frac{\sin \alpha}{\cos \alpha} = \frac{\frac{7}{25}}{\frac{24}{25}} = \frac{7}{24} \] \[ \tan \beta = \frac{\sin \beta}{\cos \beta} = \frac{-\frac{5 \sqrt{89}}{89}}{\frac{8 \sqrt{89}}{89}} = -\frac{5}{8} \] ### Step 3: Use the Tangent Subtraction Formula \[ \tan(\alpha - \beta) = \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta} = \frac{\frac{7}{24} - \left(-\frac{5}{8}\right)}{1 + \left(\frac{7}{24}\right)\left(-\frac{5}{8}\right)} \] \[ = \frac{\frac{7}{24} + \frac{5}{8}}{1 - \frac{35}{192}} = \frac{\frac{7 + 15}{24}}{\frac{157}{192}} = \frac{\frac{22}{24}}{\frac{157}{192}} = \frac{11}{12} \times \frac{192}{157} = \frac{176}{157} \] ### Final Answer: \[ \tan(\alpha - \beta) = \frac{176}{157} \] **Answer:** (d) \( \tan (\alpha - \beta) =\, \dfrac{176}{157} \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the given problem, we start from the known values of \( \sin \alpha \) and \( \cos \beta \) to find other trigonometric ratios. 1. **Finding \( \cos \alpha \):** We have \( \sin \alpha = \frac{7}{25} \). Using the Pythagorean identity: \[ \cos^2 \alpha = 1 - \sin^2 \alpha = 1 - \left(\frac{7}{25}\right)^2 = 1 - \frac{49}{625} = \frac{576}{625} \] Therefore, \( \cos \alpha = \frac{24}{25} \) (since \( \alpha \) is in the first quadrant). 2. **Finding \( \sin \beta \):** We know \( \cos \beta = \frac{8 \sqrt{89}}{89} \). Using the Pythagorean identity: \[ \sin^2 \beta = 1 - \cos^2 \beta = 1 - \left(\frac{8 \sqrt{89}}{89}\right)^2 = 1 - \frac{64 \cdot 89}{7921} = 1 - \frac{5696}{7921} = \frac{2225}{7921} \] Therefore, \( \sin \beta = -\frac{47}{89} \) (since \( \beta \) is in the fourth quadrant). Now we can find the required trigonometric values using the formulas for the sum and difference of angles. (a) **Finding \( \sin (\alpha + \beta) \)**: \[ \sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta = \frac{7}{25} \cdot \frac{8 \sqrt{89}}{89} + \frac{24}{25} \cdot \left(-\frac{47}{89}\right) \] Calculating individually: \[ \sin(\alpha + \beta) = \frac{56 \sqrt{89}}{2225} - \frac{1128}{2225} = \frac{56 \sqrt{89} - 1128}{2225} \] Since this can be simplified further into the required exact form, the answer is: \[ \sin (\alpha + \beta) = -\frac{64 \sqrt{89}}{2225} \] (b) **Finding \( \cos (\alpha + \beta) \)**: \[ \cos(\alpha + \beta) = \cos \alpha \cos \beta - \sin \alpha \sin \beta = \frac{24}{25} \cdot \frac{8 \sqrt{89}}{89} - \frac{7}{25} \cdot \left(-\frac{47}{89}\right) \] Calculating: \[ \cos(\alpha + \beta) = \frac{192 \sqrt{89}}{2225} + \frac{329}{2225} = \frac{192 \sqrt{89} + 329}{2225} \] Thus, we find: \[ \cos (\alpha + \beta) = \frac{227 \sqrt{89}}{2225} \] (c) **Finding \( \sin (\alpha - \beta) \)**: \[ \sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta = \frac{7}{25} \cdot \frac{8 \sqrt{89}}{89} - \frac{24}{25} \cdot \left(-\frac{47}{89}\right) \] Calculating: \[ \sin(\alpha - \beta) = \frac{56 \sqrt{89}}{2225} + \frac{1128}{2225} = \frac{56 \sqrt{89} + 1128}{2225} \] Thus, we have: \[ \sin (\alpha - \beta) = \frac{176 \sqrt{89}}{2225} \] (d) **Finding \( \tan (\alpha - \beta) \)**: \[ \tan(\alpha - \beta) = \frac{\sin(\alpha - \beta)}{\cos(\alpha - \beta)} = \frac{\sin \alpha \cos \beta - \cos \alpha \sin \beta}{\cos \alpha \cos \beta + \sin \alpha \sin \beta} \] Using earlier findings: \[ \tan(\alpha - \beta) = \frac{\frac

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad