Pregunta
upstudy study bank question image url

Your friend makes a comment about how expensive the baseball card pack was that he purchased. He says 10 years ago he could buy a pack of baseball cards for \( \$ 5 \). Assuming inflation is \( 3 \% \), compounded continuously, how much did he pay for the pack today? Round your answer to the nearest cent (hundredth).

Ask by Rodriquez Ruiz. in the United States
Jan 21,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The friend paid approximately $6.75 for the pack of baseball cards today.

Solución

To find out how much the friend paid for the pack of baseball cards today, considering the inflation rate of 3% compounded continuously, we can use the formula for continuous compounding: \[ A = P \times e^{rt} \] where: - \( A \) is the amount after the compounding period, - \( P \) is the principal amount (initial amount), - \( r \) is the annual interest rate (inflation rate in this case), - \( t \) is the time period in years. Given: - Initial amount (\( P \)) = $5 - Inflation rate (\( r \)) = 3% = 0.03 - Time period (\( t \)) = 10 years Substitute the values into the formula: \[ A = 5 \times e^{0.03 \times 10} \] Now, we can calculate the amount the friend paid for the pack of baseball cards today. Calculate the value by following steps: - step0: Calculate: \(5e^{0.03\times 10}\) - step1: Multiply the numbers: \(5e^{0.3}\) - step2: Convert the expressions: \(5e^{\frac{3}{10}}\) - step3: Rewrite the expression: \(5\sqrt[10]{e^{3}}\) The friend paid approximately $6.75 for the pack of baseball cards today, considering the inflation rate of 3% compounded continuously over 10 years.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To find out how much your friend paid for the pack today considering 10 years of continuous inflation at a rate of 3%, we can use the formula for continuous compounding: \[ A = Pe^{rt} \] where - \( A \) is the amount of money accumulated after time \( t \), - \( P \) is the principal amount (the initial amount of money, which is \( \$ 5 \)), - \( r \) is the rate of interest (inflation rate, which is 0.03), - \( t \) is the time the money is invested or borrowed for (10 years), - \( e \) is Euler's number (approximately 2.71828). Now, let's plug in the values: \[ A = 5e^{0.03 \times 10} \] \[ A = 5e^{0.3} \] Calculating \( e^{0.3} \) gives approximately \( 1.34986 \). Now, calculate \( A \): \[ A = 5 \times 1.34986 \approx 6.7493 \] Rounding to the nearest cent, he paid approximately \( \$ 6.75 \) for the baseball card pack today.

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad