Pregunta
upstudy study bank question image url

Use the given conditions to write an equation for the line in point-slope form and in slope-intercept form. Passing through \( (-3,-7) \) and parallel to the line whose equation is \( y=-4 x+3 \) Write an equation for the line in point-slope form. \( \square \) (Simplify your answer. Use integers or fractions for any numbers in the equation.) Write an equation for the line in slope-intercept form. \( \square \) Simplify your answer. Use integers or fractions for any numbers in the equation.)

Ask by Matthews Ward. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Point-Slope Form:** \( y + 7 = -4(x + 3) \) **Slope-Intercept Form:** \( y = -4x - 19 \)

Solución

To find the equation of the line that passes through the point \((-3, -7)\) and is parallel to the line \(y = -4x + 3\), follow these steps: ### 1. Determine the Slope Since the lines are parallel, they have the **same slope**. The given line \(y = -4x + 3\) has a slope (\(m\)) of \(-4\). ### 2. Point-Slope Form The **point-slope form** of a line is: \[ y - y_1 = m(x - x_1) \] Where \((x_1, y_1)\) is a point on the line and \(m\) is the slope. Using the point \((-3, -7)\) and the slope \(-4\): \[ y - (-7) = -4(x - (-3)) \] Simplify: \[ y + 7 = -4(x + 3) \] **Point-Slope Form:** \[ y + 7 = -4(x + 3) \] ### 3. Slope-Intercept Form The **slope-intercept form** of a line is: \[ y = mx + b \] Where \(m\) is the slope and \(b\) is the y-intercept. We already know \(m = -4\). To find \(b\), plug in the point \((-3, -7)\): \[ -7 = -4(-3) + b \] \[ -7 = 12 + b \] \[ b = -19 \] **Slope-Intercept Form:** \[ y = -4x - 19 \] ### Final Answers - **Point-Slope Form:** \( y + 7 = -4(x + 3) \) - **Slope-Intercept Form:** \( y = -4\,x - 19 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the equation of the line passing through the point (-3, -7) and parallel to \( y = -4x + 3 \), we first note that parallel lines have the same slope. The slope of the given line is -4. **Point-slope form:** We can use the point-slope formula \( y - y_1 = m(x - x_1) \), where \( m \) is the slope and \( (x_1, y_1) \) is the point (-3, -7). Substituting the values, we get: \[ y + 7 = -4(x + 3) \] **Slope-intercept form:** Now, we can convert it to slope-intercept form (\( y = mx + b \)). Distributing on the right side: \[ y + 7 = -4x - 12 \] Now, subtracting 7 from both sides gives us: \[ y = -4x - 19 \] So, the equations are: 1. Point-slope form: \( y + 7 = -4(x + 3) \) 2. Slope-intercept form: \( y = -4x - 19 \)

preguntas relacionadas

Latest Algebra Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad