Given the function \( W(x, y)=4 x^{2}+y^{2} \), find \( W(5+h, 2+h) \). \( W(5+h, 2+h)=\square \) (t)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
To find \( W(5+h, 2+h) \), we start by substituting \( x = 5+h \) and \( y = 2+h \) into the function: \[ W(5+h, 2+h) = 4(5+h)^2 + (2+h)^2 \] Calculating \( (5+h)^2 \): \[ (5+h)^2 = 25 + 10h + h^2 \] So, \[ 4(5+h)^2 = 4(25 + 10h + h^2) = 100 + 40h + 4h^2 \] Now calculating \( (2+h)^2 \): \[ (2+h)^2 = 4 + 4h + h^2 \] Now add these together: \[ W(5+h, 2+h) = (100 + 40h + 4h^2) + (4 + 4h + h^2) \] Combining like terms, we have: \[ W(5+h, 2+h) = 100 + 4 + 40h + 4h + 4h^2 + h^2 = 104 + 44h + 5h^2 \] Thus, we conclude: \[ W(5+h, 2+h) = 5h^2 + 44h + 104 \]