Pregunta
upstudy study bank question image url

All changes saved 2. Which of the following sets of measurements can form exactly 1 triangle? \( a=11, b=15, A=36^{\circ} \) \( a=12, b=27, A=37^{\circ} \) \( a=7, b=5, A=19^{\circ} \) \( a=6, b=10, A=42^{\circ} \) \( a \)

Ask by Deleon Mccarthy. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Only the measurements \( a=7 \), \( b=5 \), and \( A=19^{\circ} \) can form exactly one triangle.

Solución

To determine which set of measurements can form **exactly one triangle**, we'll analyze each option using the **Side-Side-Angle (SSA)** condition. The SSA scenario can sometimes lead to: 1. **No triangle** 2. **Exactly one triangle** 3. **Two distinct triangles** ### Key Concepts: - **Height Calculation**: \( h = b \cdot \sin(A) \) - **Triangle Conditions**: - If \( a < h \): **No triangle** - If \( a = h \): **One right triangle** - If \( h < a < b \) and \( A \) is **acute**: **Two triangles** - If \( a \geq b \): **One triangle** ### Analyzing Each Option: 1. **\( a = 11 \), \( b = 15 \), \( A = 36^\circ \)** - \( h = 15 \cdot \sin(36^\circ) \approx 8.817 \) - \( a = 11 > h \) and \( a < b \) - **Result**: **Two triangles** 2. **\( a = 12 \), \( b = 27 \), \( A = 37^\circ \)** - \( h = 27 \cdot \sin(37^\circ) \approx 16.25 \) - \( a = 12 < h \) - **Result**: **No triangle** 3. **\( a = 7 \), \( b = 5 \), \( A = 19^\circ \)** - \( h = 5 \cdot \sin(19^\circ) \approx 1.625 \) - \( a = 7 > h \) and \( a > b \) - **Result**: **One triangle** 4. **\( a = 6 \), \( b = 10 \), \( A = 42^\circ \)** - \( h = 10 \cdot \sin(42^\circ) \approx 6.691 \) - \( a = 6 < h \) - **Result**: **No triangle** ### Conclusion: Among the provided options, **only the third set** (\( a = 7 \), \( b = 5 \), \( A = 19^\circ \)) **forms exactly one triangle**. **Answer:** Only the measurements \( a=7 \), \( b=5 \), and \( A=19^{\circ} \) form exactly one triangle.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

To form a triangle using two sides and an angle, you can apply the Law of Sines or the Ambiguous Case of the Triangle. However, if the angle given is between the two sides (SAS case), you will always form exactly one triangle. In the case of \( a=11, b=15, A=36^{\circ} \), you can observe that the angle is not between the sides, and this could potentially lead to an ambiguous situation depending on the conditions. On the other hand, the measurement set \( a=6, b=10, A=42^{\circ} \) presents two sides and an included angle scenario (SAS), ensuring that a single triangle can be formed. This is a solid rule in triangle construction; when you have two sides and the included angle, there's no ambiguity!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad