Pregunta
upstudy study bank question image url

Irite variable expressions for arithmetic sequences 5 VF Vrite an expression to describe the sequence below. Use \( n \) to represent n the sequence, where \( n=1 \) for the first term. \( -7,-6,-5,-4, \ldots \) \( a_{n}=\square \) Submit Work it out

Ask by Paul Mcfarlane. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( a_n = n - 8 \)

Solución

To find a variable expression for the given arithmetic sequence: \[ -7, -6, -5, -4, \ldots \] we'll follow these steps: ### 1. Identify the First Term (\(a_1\)) and the Common Difference (\(d\)): - **First term (\(a_1\))**: This is the first number in the sequence. \[ a_1 = -7 \] - **Common difference (\(d\))**: This is the difference between consecutive terms. \[ d = (-6) - (-7) = 1 \] ### 2. Use the Arithmetic Sequence Formula: The general formula for the \(n\)-th term of an arithmetic sequence is: \[ a_n = a_1 + (n - 1) \times d \] Plugging in the values we found: \[ a_n = -7 + (n - 1) \times 1 \] ### 3. Simplify the Expression: \[ a_n = -7 + n - 1 = n - 8 \] ### 4. Final Expression: \[ a_n = n - 8 \] **Verification:** Let's check if this formula works for the first few terms. - **For \(n = 1\):** \[ a_1 = 1 - 8 = -7 \quad \text{(matches the first term)} \] - **For \(n = 2\):** \[ a_2 = 2 - 8 = -6 \quad \text{(matches the second term)} \] - **For \(n = 3\):** \[ a_3 = 3 - 8 = -5 \quad \text{(matches the third term)} \] - **For \(n = 4\):** \[ a_4 = 4 - 8 = -4 \quad \text{(matches the fourth term)} \] Since the formula correctly generates the terms of the sequence, our expression is correct. \[ \boxed{a_n = n - 8} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To write an expression for the arithmetic sequence \( -7, -6, -5, -4, \ldots \), we need to find the first term and the common difference. The first term \( a_1 \) is \( -7 \), and the common difference \( d \) is \( 1 \) (since to get from -7 to -6, we add 1, and the pattern continues). The general formula for the \( n \)-th term of an arithmetic sequence is given by: \[ a_n = a_1 + (n - 1) \cdot d \] Plugging in our values: \[ a_n = -7 + (n - 1) \cdot 1 \] Simplifying this gives: \[ a_n = -7 + n - 1 \] \[ a_n = n - 8 \] So, the expression that describes the sequence is: \[ a_n = n - 8 \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad