Pregunta
upstudy study bank question image url

Score on last try: 0.5 of 1 pts. See Details for more. S Get a similar question You can retry this question below A researcher studying frogs is investigating the distance that a certain species of frog can jump. The jump lengths appear to be approximately normally distributed with a mean of 90 inches and a standz deviation of 8 inches. Directions: Use the "empirical rule" (68-95-99.7) for this setting. a) What proportion of frog jumps are less than 74 inches?

Ask by Mitchell Tran. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

About **2.5%** of the frog jumps are less than **74 inches**.

Solución

To determine the proportion of frog jumps that are less than 74 inches using the **empirical rule (68-95-99.7)**, follow these steps: 1. **Identify the Mean and Standard Deviation:** - **Mean (μ):** 90 inches - **Standard Deviation (σ):** 8 inches 2. **Calculate How Many Standard Deviations 74 Inches Is Below the Mean:** \[ z = \frac{74 - 90}{8} = \frac{-16}{8} = -2 \] - **74 inches** is **2 standard deviations below** the mean. 3. **Apply the Empirical Rule:** - **Within 2 standard deviations (μ ± 2σ):** Approximately **95%** of the data falls between **74 inches (90 - 16)** and **106 inches (90 + 16)**. - This means that **5%** of the data lies **outside** this range. Since the normal distribution is symmetric: - **2.5%** of jumps are **less than 74 inches**. - **2.5%** are **greater than 106 inches**. **Conclusion:** Approximately **2.5%** of the frog jumps are less than **74 inches**.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To determine the proportion of frog jumps less than 74 inches, we first need to find how many standard deviations away from the mean this value is. The mean jump length is 90 inches, and the standard deviation is 8 inches. The difference between the mean and 74 inches is 90 - 74 = 16 inches. Dividing this by the standard deviation gives us 16 / 8 = 2. This means 74 inches is 2 standard deviations below the mean. According to the empirical rule (68-95-99.7), about 95% of the data falls within 2 standard deviations of the mean in both directions. Consequently, 2.5% of the frog jumps will be below 2 standard deviations (74 inches), which means that the proportion of frog jumps less than 74 inches is 0.025 or 2.5%. In simpler terms, if you lined up a bunch of frogs in a jumping competition, there's a very small chance that you would see a leap shorter than 74 inches — only about 2.5 out of every 100 jumps! So keep your eyes peeled for those impressive jumpers, because most of them will be leaping much farther!

preguntas relacionadas

Latest Statistics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad