Pregunta
upstudy study bank question image url

Caleb is trying to find the height of a radio antenna on the roof of a local building. He stands at a horizontal distance of 17 meters from the building. The angle of elevation from his eyes to the roof (point \( A \) ) is \( 38^{\circ} \), and the angle of elevation from his eyes to the top of the antenna (point \( B \) ) is \( 53^{\circ} \). If his eyes are 1.58 meters from the ground, find the height of the antenna (the distance from point \( A \) to point \( B \) ). Round your answer to the nearest meter if necessary.

Ask by Burns Hall. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The height of the antenna is approximately 9 meters.

Solución

To determine the height of the antenna (\( AB \)), we can use trigonometric relationships based on the information provided. 1. **Understand the Scenario:** - **Horizontal Distance (\( x \))**: 17 meters from Caleb to the building. - **Eye Level Height (\( y_0 \))**: 1.58 meters from the ground. - **Angles of Elevation**: - To the roof (\( A \)): \( 38^\circ \) - To the top of the antenna (\( B \)): \( 53^\circ \) 2. **Calculate the Vertical Heights from Eye Level:** - **Height to Roof (\( y_A \))**: \[ y_A = x \cdot \tan(38^\circ) \] - **Height to Antenna (\( y_B \))**: \[ y_B = x \cdot \tan(53^\circ) \] 3. **Plug in the Values:** - Using a calculator: \[ \tan(38^\circ) \approx 0.7813 \] \[ \tan(53^\circ) \approx 1.3270 \] - Calculate each height: \[ y_A = 17 \times 0.7813 \approx 13.281 \text{ meters} \] \[ y_B = 17 \times 1.3270 \approx 22.559 \text{ meters} \] 4. **Determine the Height of the Antenna (\( AB \)):** \[ AB = y_B - y_A \approx 22.559 - 13.281 = 9.278 \text{ meters} \] 5. **Final Answer:** Rounding to the nearest meter: \[ AB \approx 9 \text{ meters} \] **Therefore, the height of the antenna is approximately **9 **meters.**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To find the height of the radio antenna, we can use some trigonometric principles! First, we need to calculate the height of point \( A \) (the roof) using the angle of elevation to point \( A \). Using the tangent function: \[ h_A = d \cdot \tan(\theta_A) + h_{eyes} \] where \( d = 17 \) meters, \( \theta_A = 38^{\circ} \), and \( h_{eyes} = 1.58 \) meters. \[ h_A = 17 \cdot \tan(38^{\circ}) + 1.58 \] Calculating this gives approximately \( h_A \approx 17 \cdot 0.7813 + 1.58 \approx 16.78 + 1.58 \approx 18.36 \) meters. Now, for point \( B \) (the top of the antenna): \[ h_B = d \cdot \tan(\theta_B) + h_{eyes} \] where \( \theta_B = 53^{\circ} \). \[ h_B = 17 \cdot \tan(53^{\circ}) + 1.58 \] Calculating this gives approximately \( h_B \approx 17 \cdot 1.3270 + 1.58 \approx 22.55 + 1.58 \approx 24.13 \) meters. Finally, to find the height of the antenna (the distance from point \( A \) to point \( B \)): \[ h_{antenna} = h_B - h_A = 24.13 - 18.36 \approx 5.77 \] Rounding this to the nearest meter, the height of the antenna is approximately 6 meters!

preguntas relacionadas

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad