Pregunta
upstudy study bank question image url

Select the correct answer. Find the quotient. \( \frac{2 x-3}{x} \div \frac{7}{a^{2}} \) A. \( \frac{7}{2(2 x-3)} \) B. \( \frac{7 x}{2 x-3} \) C. \( \frac{2 x-3}{7 x} \) D. \( \frac{x(2 x-3)}{7} \) Next

Ask by Rose Kirk. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The correct answer is D: \( \frac{x(2x-3)}{7} \).

Solución

To find the quotient of the expression: \[ \frac{2x - 3}{x} \div \frac{7}{a^{2}} \] **Step 1: Rewrite the Division as Multiplication** Dividing by a fraction is the same as multiplying by its reciprocal. Therefore: \[ \frac{2x - 3}{x} \div \frac{7}{a^{2}} = \frac{2x - 3}{x} \times \frac{a^{2}}{7} \] **Step 2: Simplify the Expression** Multiply the numerators together and the denominators together: \[ \frac{(2x - 3) \cdot a^{2}}{x \cdot 7} = \frac{a^{2}(2x - 3)}{7x} \] However, none of the provided options include \(a^{2}\), which suggests there might be a typographical error in the original problem. If we assume that \(a^{2}\) was intended to be \(x^{2}\), the expression becomes: \[ \frac{2x - 3}{x} \div \frac{7}{x^{2}} = \frac{2x - 3}{x} \times \frac{x^{2}}{7} = \frac{x(2x - 3)}{7} \] This matches one of the provided options. **Correct Answer:** **D.** \(\frac{x(2x-3)}{7}\)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the expression \( \frac{2 x-3}{x} \div \frac{7}{a^{2}} \), we first rewrite the division as multiplication by the reciprocal: \( \frac{2 x-3}{x} \times \frac{a^2}{7} \). Now we can simplify this expression: 1. Combine the products: \( \frac{(2 x-3) \cdot a^2}{7 x} \). 2. This cannot be simplified further without additional information about \( a \) or the value of \( x \). None of the answer choices directly match this expanded form, so let's double check any values or assumptions. The correct answer is **not listed** among the options given if we strictly adhere to the mathematical simplification process! Now for a little extra nugget of wisdom and fun facts! Did you know that long division isn't just for numbers? This technique can also be applied to polynomials! Understanding how to manipulate expressions can unlock more advanced math concepts down the road, making it a handy skill for tackling algebraic challenges head-on! Speaking of tackling challenges, one common pitfall in algebra is forgetting to apply the "multiply by the reciprocal" rule when dividing fractions. Always double-check that step! It’s the kind of mistake that can lead to some seriously tangled equations, or worse, completely incorrect final answers!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad