Pregunta
upstudy study bank question image url

Suppose an investment account is opened with an intial deposit of \( \$ 15,000 \) earning \( 9.2 \% \) interest. Round all answers to the nearest dollar. a. How much will the account be worth after 20 years if it is compounded monthly? \( \$ \) b. How much will the account be worth after 20 years if it is compounded continuously? \( \$ \)

Ask by Simmons Mejia. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

a. The account will be worth approximately \$32,879 after 20 years with monthly compounding. b. The account will be worth approximately \$87,206 after 20 years with continuous compounding.

Solución

To calculate the future value of the investment account after 20 years with different compounding methods, we can use the formula for compound interest: \[ A = P \left( 1 + \frac{r}{n} \right)^{nt} \] where: - \( A \) is the future value of the investment - \( P \) is the principal amount (initial deposit) - \( r \) is the annual interest rate - \( n \) is the number of times the interest is compounded per year - \( t \) is the time in years Given: - Initial deposit \( P = \$15,000 \) - Annual interest rate \( r = 9.2\% = 0.092 \) - Compounding frequency: a. Monthly compounding: \( n = 12 \) b. Continuous compounding: \( n = \infty \) a. For monthly compounding: \[ A = 15000 \left( 1 + \frac{0.092}{12} \right)^{12 \times 20} \] b. For continuous compounding: \[ A = 15000 \left( 1 + 0.092 \right)^{20} \] Let's calculate the future value for both scenarios. Calculate the value by following steps: - step0: Calculate: \(15000\left(1+\frac{0.092}{12}\right)^{12}\times 20\) - step1: Divide the terms: \(15000\left(1+\frac{23}{3000}\right)^{12}\times 20\) - step2: Add the numbers: \(15000\left(\frac{3023}{3000}\right)^{12}\times 20\) - step3: Multiply the terms: \(300000\left(\frac{3023}{3000}\right)^{12}\) - step4: Simplify: \(300000\times \frac{3023^{12}}{3000^{12}}\) - step5: Rewrite the expression: \(3000\times 100\times \frac{3023^{12}}{3000^{12}}\) - step6: Reduce the numbers: \(100\times \frac{3023^{12}}{3000^{11}}\) - step7: Rewrite the expression: \(100\times \frac{3023^{12}}{1000^{11}\times 3^{11}}\) - step8: Rewrite the expression: \(10^{2}\times \frac{3023^{12}}{10^{33}\times 3^{11}}\) - step9: Reduce the numbers: \(1\times \frac{3023^{12}}{10^{31}\times 3^{11}}\) - step10: Multiply the fractions: \(\frac{3023^{12}}{10^{31}\times 3^{11}}\) Calculate or simplify the expression \( 15000 * (1 + 0.092)^20 \). Calculate the value by following steps: - step0: Calculate: \(15000\left(1+0.092\right)^{20}\) - step1: Add the numbers: \(15000\times 1.092^{20}\) - step2: Convert the expressions: \(15000\left(\frac{273}{250}\right)^{20}\) - step3: Simplify: \(15000\times \frac{273^{20}}{250^{20}}\) - step4: Rewrite the expression: \(250\times 60\times \frac{273^{20}}{250^{20}}\) - step5: Reduce the numbers: \(60\times \frac{273^{20}}{250^{19}}\) - step6: Rewrite the expression: \(10\times 6\times \frac{273^{20}}{250^{19}}\) - step7: Rewrite the expression: \(10\times 6\times \frac{273^{20}}{10^{19}\times 25^{19}}\) - step8: Reduce the numbers: \(6\times \frac{273^{20}}{10^{18}\times 25^{19}}\) - step9: Rewrite the expression: \(2\times 3\times \frac{273^{20}}{10^{18}\times 25^{19}}\) - step10: Rewrite the expression: \(2\times 3\times \frac{273^{20}}{2^{18}\times 5^{18}\times 25^{19}}\) - step11: Reduce the numbers: \(3\times \frac{273^{20}}{2^{17}\times 5^{18}\times 25^{19}}\) - step12: Multiply the fractions: \(\frac{3\times 273^{20}}{2^{17}\times 5^{56}}\) a. The account will be worth approximately $32,879.41 after 20 years if it is compounded monthly. b. The account will be worth approximately $87,205.53 after 20 years if it is compounded continuously.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To calculate the future value of the investment account in both cases, we can use the formulas for compound interest. a. For monthly compounding, we use the formula: \[ A = P \left(1 + \frac{r}{n}\right)^{nt} \] Where: - \(A\) is the amount of money accumulated after n years, including interest. - \(P\) is the principal amount (\$15,000). - \(r\) is the annual interest rate (decimal) (0.092). - \(n\) is the number of times that interest is compounded per unit year (12 for monthly). - \(t\) is the time the money is invested for in years (20). Plugging in the values: \[ A = 15000 \left(1 + \frac{0.092}{12}\right)^{12 \times 20} \approx 15000 \left(1 + 0.00766667\right)^{240} \approx 15000 (6.315671) \approx 94615 \] So, the account will be worth approximately \( \$ 94,615 \). b. For continuous compounding, the formula is: \[ A = Pe^{rt} \] Using the same principal amount and interest rate: \[ A = 15000 \times e^{0.092 \times 20} \approx 15000 \times e^{1.84} \approx 15000 \times 6.287264 \approx 94309 \] Thus, the account will be worth approximately \( \$ 94,309 \). So, summarizing: a. After 20 years with monthly compounding, the account is worth approximately \( \$ 94,615 \). b. After 20 years with continuous compounding, the account is worth approximately \( \$ 94,309 \).

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad