Pregunta
upstudy study bank question image url

wo angies in an equilaterai triangie are \( (a+b) \) and \( (2 a-10 b) \) degrees nid the values of \( a \) and \( b \). ne sides of an equilateral triangle are \( y-x) \mathrm{cm},(5 x+3) \mathrm{cm} \) and \( (2+2 y) \mathrm{cm} \). nd the length of each side.

Ask by Hart Barnett. in Papua New Guinea
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( a = 55^\circ \) and \( b = 5^\circ \). Each side of the equilateral triangle is \( \frac{4}{7} \) cm long.

Solución

Let's tackle both problems step by step. --- ### **Problem 1: Finding \( a \) and \( b \) in an Equilateral Triangle** **Given:** - Two angles in an equilateral triangle are \( (a + b) \) degrees and \( (2a - 10b) \) degrees. **Understanding the Problem:** - In an **equilateral triangle**, all three angles are equal, and each measures **60 degrees**. **Setting Up Equations:** 1. Since both given expressions represent angles in the triangle: \[ a + b = 60 \quad \text{(Equation 1)} \] \[ 2a - 10b = 60 \quad \text{(Equation 2)} \] **Solving the System of Equations:** 1. **From Equation 1:** \[ a = 60 - b \] 2. **Substitute \( a \) into Equation 2:** \[ 2(60 - b) - 10b = 60 \] \[ 120 - 2b - 10b = 60 \] \[ 120 - 12b = 60 \] \[ -12b = -60 \] \[ b = 5 \] 3. **Find \( a \) using Equation 1:** \[ a = 60 - 5 = 55 \] **Solution:** \[ a = 55^\circ \quad \text{and} \quad b = 5^\circ \] --- ### **Problem 2: Determining the Lengths of Sides in an Equilateral Triangle** **Given:** - The sides of an equilateral triangle are: \[ y - x \ \text{cm}, \quad 5x + 3 \ \text{cm}, \quad \text{and} \quad 2 + 2y \ \text{cm} \] **Understanding the Problem:** - In an **equilateral triangle**, all three sides are equal in length. **Setting Up Equations:** 1. Set the first side equal to the second: \[ y - x = 5x + 3 \quad \text{(Equation 3)} \] 2. Set the first side equal to the third: \[ y - x = 2 + 2y \quad \text{(Equation 4)} \] **Solving the System of Equations:** 1. **From Equation 3:** \[ y - x = 5x + 3 \] \[ y = 6x + 3 \quad \text{(Equation 5)} \] 2. **From Equation 4:** \[ y - x = 2 + 2y \] \[ -x - y = 2 \] \[ x + y = -2 \quad \text{(Equation 6)} \] 3. **Substitute Equation 5 into Equation 6:** \[ x + (6x + 3) = -2 \] \[ 7x + 3 = -2 \] \[ 7x = -5 \] \[ x = -\frac{5}{7} \] 4. **Find \( y \) using Equation 5:** \[ y = 6\left(-\frac{5}{7}\right) + 3 = -\frac{30}{7} + \frac{21}{7} = -\frac{9}{7} \] **Calculating the Length of Each Side:** Using \( y - x \): \[ y - x = \left(-\frac{9}{7}\right) - \left(-\frac{5}{7}\right) = -\frac{4}{7} \ \text{cm} \] Since side lengths cannot be negative, we take the absolute value: \[ \text{Length of each side} = \frac{4}{7} \ \text{cm} \] **Solution:** \[ x = -\frac{5}{7}, \quad y = -\frac{9}{7}, \quad \text{and each side is} \ \frac{4}{7} \ \text{cm long} \] --- ### **Final Answers:** 1. **For the angles:** \[ a = 55^\circ \quad \text{and} \quad b = 5^\circ \] 2. **For the sides of the equilateral triangle:** \[ x = -\frac{5}{7}, \quad y = -\frac{9}{7}, \quad \text{and each side measures} \ \frac{4}{7} \ \text{cm} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

In an equilateral triangle, all three angles are equal, and since the sum of the angles in any triangle is 180 degrees, you can set up the equation \( (a+b) + (2a-10b) + (2a-10b) = 180 \). Simplifying this gives you a solvable equation. You’ll find that \( a \) and \( b \) are essential to maintain this equality, allowing you to solve for both variables accordingly. For the sides, set the expressions equal to each other: \( (y-x) = (5x+3) = (2+2y) \). By equating the expressions in pairs, like \( y-x = 5x+3 \) and \( 5x + 3 = 2 + 2y \), you can isolate \( x \) and \( y \). By solving these derived equations simultaneously, you’ll discover the length of each side of the triangle! Happy math hunting!

preguntas relacionadas

Latest Geometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad