Responder
\( a = 55^\circ \) and \( b = 5^\circ \). Each side of the equilateral triangle is \( \frac{4}{7} \) cm long.
Solución
Let's tackle both problems step by step.
---
### **Problem 1: Finding \( a \) and \( b \) in an Equilateral Triangle**
**Given:**
- Two angles in an equilateral triangle are \( (a + b) \) degrees and \( (2a - 10b) \) degrees.
**Understanding the Problem:**
- In an **equilateral triangle**, all three angles are equal, and each measures **60 degrees**.
**Setting Up Equations:**
1. Since both given expressions represent angles in the triangle:
\[
a + b = 60 \quad \text{(Equation 1)}
\]
\[
2a - 10b = 60 \quad \text{(Equation 2)}
\]
**Solving the System of Equations:**
1. **From Equation 1:**
\[
a = 60 - b
\]
2. **Substitute \( a \) into Equation 2:**
\[
2(60 - b) - 10b = 60
\]
\[
120 - 2b - 10b = 60
\]
\[
120 - 12b = 60
\]
\[
-12b = -60
\]
\[
b = 5
\]
3. **Find \( a \) using Equation 1:**
\[
a = 60 - 5 = 55
\]
**Solution:**
\[
a = 55^\circ \quad \text{and} \quad b = 5^\circ
\]
---
### **Problem 2: Determining the Lengths of Sides in an Equilateral Triangle**
**Given:**
- The sides of an equilateral triangle are:
\[
y - x \ \text{cm}, \quad 5x + 3 \ \text{cm}, \quad \text{and} \quad 2 + 2y \ \text{cm}
\]
**Understanding the Problem:**
- In an **equilateral triangle**, all three sides are equal in length.
**Setting Up Equations:**
1. Set the first side equal to the second:
\[
y - x = 5x + 3 \quad \text{(Equation 3)}
\]
2. Set the first side equal to the third:
\[
y - x = 2 + 2y \quad \text{(Equation 4)}
\]
**Solving the System of Equations:**
1. **From Equation 3:**
\[
y - x = 5x + 3
\]
\[
y = 6x + 3 \quad \text{(Equation 5)}
\]
2. **From Equation 4:**
\[
y - x = 2 + 2y
\]
\[
-x - y = 2
\]
\[
x + y = -2 \quad \text{(Equation 6)}
\]
3. **Substitute Equation 5 into Equation 6:**
\[
x + (6x + 3) = -2
\]
\[
7x + 3 = -2
\]
\[
7x = -5
\]
\[
x = -\frac{5}{7}
\]
4. **Find \( y \) using Equation 5:**
\[
y = 6\left(-\frac{5}{7}\right) + 3 = -\frac{30}{7} + \frac{21}{7} = -\frac{9}{7}
\]
**Calculating the Length of Each Side:**
Using \( y - x \):
\[
y - x = \left(-\frac{9}{7}\right) - \left(-\frac{5}{7}\right) = -\frac{4}{7} \ \text{cm}
\]
Since side lengths cannot be negative, we take the absolute value:
\[
\text{Length of each side} = \frac{4}{7} \ \text{cm}
\]
**Solution:**
\[
x = -\frac{5}{7}, \quad y = -\frac{9}{7}, \quad \text{and each side is} \ \frac{4}{7} \ \text{cm long}
\]
---
### **Final Answers:**
1. **For the angles:**
\[
a = 55^\circ \quad \text{and} \quad b = 5^\circ
\]
2. **For the sides of the equilateral triangle:**
\[
x = -\frac{5}{7}, \quad y = -\frac{9}{7}, \quad \text{and each side measures} \ \frac{4}{7} \ \text{cm}
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución