2. Alicia multiplied \( \frac{3 x-6}{8 x-16} \cdot \frac{4 x}{9} \). Her work is shown. Alicia \[ \begin{aligned} \frac{3 x-6}{8 x-16} \cdot \frac{4 x}{9}= & \frac{3^{\prime} x-6}{8 x-16} \cdot \frac{4^{\prime} x}{9} \\ & =\frac{x-6}{-14} \cdot \frac{1}{3} \\ & =\frac{x-6}{-42} ; x \neq 2 \end{aligned} \] Identify the error(s) in Alicia's work. Then correctly perform the multiplication.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Beyond the Answer
Alicia made a couple of mistakes in her simplification. First, she did not correctly factor the expressions before multiplying. The numerator \(3x - 6\) can be factored as \(3(x - 2)\), and the denominator \(8x - 16\) can be factored as \(8(x - 2)\). This leads to a cancellation of the common factor \(x - 2\). To correctly perform the multiplication, we start by rewriting the fractions: \[ \frac{3(x-2)}{8(x-2)} \cdot \frac{4x}{9} \] Now we can cancel the \(x - 2\): \[ \frac{3}{8} \cdot \frac{4x}{9} = \frac{3 \cdot 4x}{8 \cdot 9} = \frac{12x}{72} \] This simplifies to: \[ \frac{x}{6}, \quad x \neq 2 \] So the final answer is \(\frac{x}{6}\), where \(x\) cannot equal 2 to avoid division by zero in the original function.