Pregunta
upstudy study bank question image url

2. Alicia multiplied \( \frac{3 x-6}{8 x-16} \cdot \frac{4 x}{9} \). Her work is shown. Alicia \[ \begin{aligned} \frac{3 x-6}{8 x-16} \cdot \frac{4 x}{9}= & \frac{3^{\prime} x-6}{8 x-16} \cdot \frac{4^{\prime} x}{9} \\ & =\frac{x-6}{-14} \cdot \frac{1}{3} \\ & =\frac{x-6}{-42} ; x \neq 2 \end{aligned} \] Identify the error(s) in Alicia's work. Then correctly perform the multiplication.

Ask by Schmidt Schmidt. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Alicia made mistakes in factoring and canceling common terms. The correct multiplication result is \( \frac{x}{6} \).

Solución

Let's analyze Alicia's work step by step to identify the errors and then correctly perform the multiplication. ### Step 1: Identify Errors in Alicia's Work 1. **Factoring Errors**: - Alicia factored \(3x - 6\) incorrectly. The correct factorization is: \[ 3x - 6 = 3(x - 2) \] - She also factored \(8x - 16\) incorrectly. The correct factorization is: \[ 8x - 16 = 8(x - 2) \] 2. **Multiplication Errors**: - After factoring, Alicia wrote: \[ \frac{3^{\prime} x - 6}{8 x - 16} \cdot \frac{4^{\prime} x}{9} \] This notation is incorrect. The correct expression after factoring should be: \[ \frac{3(x - 2)}{8(x - 2)} \cdot \frac{4x}{9} \] 3. **Cancellation Errors**: - Alicia did not cancel the common factor \(x - 2\) correctly. The \(x - 2\) terms in the numerator and denominator can be canceled. ### Step 2: Correctly Perform the Multiplication Now, let's perform the multiplication correctly: 1. **Write the Expression**: \[ \frac{3(x - 2)}{8(x - 2)} \cdot \frac{4x}{9} \] 2. **Cancel Common Factors**: - The \(x - 2\) terms cancel out: \[ = \frac{3}{8} \cdot \frac{4x}{9} \] 3. **Multiply the Remaining Terms**: \[ = \frac{3 \cdot 4x}{8 \cdot 9} = \frac{12x}{72} \] 4. **Simplify the Fraction**: \[ = \frac{x}{6} \] ### Final Result The correct result of the multiplication is: \[ \frac{x}{6}, \quad x \neq 2 \] ### Summary of Errors - Incorrect factorization of \(3x - 6\) and \(8x - 16\). - Incorrect cancellation of common factors. - The final answer should be \(\frac{x}{6}\) instead of \(\frac{x-6}{-42}\).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

Alicia made a couple of mistakes in her simplification. First, she did not correctly factor the expressions before multiplying. The numerator \(3x - 6\) can be factored as \(3(x - 2)\), and the denominator \(8x - 16\) can be factored as \(8(x - 2)\). This leads to a cancellation of the common factor \(x - 2\). To correctly perform the multiplication, we start by rewriting the fractions: \[ \frac{3(x-2)}{8(x-2)} \cdot \frac{4x}{9} \] Now we can cancel the \(x - 2\): \[ \frac{3}{8} \cdot \frac{4x}{9} = \frac{3 \cdot 4x}{8 \cdot 9} = \frac{12x}{72} \] This simplifies to: \[ \frac{x}{6}, \quad x \neq 2 \] So the final answer is \(\frac{x}{6}\), where \(x\) cannot equal 2 to avoid division by zero in the original function.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad