Pregunta
upstudy study bank question image url

Graph t, locate all points of discontinuty, end discuss the behavior of t at these points. \[ I(x)=\left\{\begin{array}{ll} 1+x & \text { if } x<1 \\ 6-x & \text { if } x \geq 1 \end{array}\right. \] Locate all points of discontinuity. Solect the conect choice below and, if necessary, fill in the answor box to complete your choice. A. The poirl(s) of d scontinuity is/are \( \mathrm{x}= \) \( \square \) (Use a comma to separate answers as needed.) B. There are no points of discontinuity Discuss the behavior of t at its point(s) of discontinuity. Find \( \mathrm{f}(\mathrm{x}) \) at any points of discontinuity. Select the corred choice below and, if necessary, fill in the answer hox to complete your choice A. At the poinl(s) of discontinuity, the value(s) of the function \( f(x) \) is/are 5 . (Use a comma to separate answers as needed.) B. There are no points of discontinuity.

Ask by Phillips Kelley. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Points of Discontinuity:** \( x = 1 \) **Function Value at Discontinuity:** 5

Solución

Let's analyze the piecewise function \( I(x) \): \[ I(x) = \begin{cases} 1 + x & \text{if } x < 1 \\ 6 - x & \text{if } x \geq 1 \end{cases} \] ### 1. Locating Points of Discontinuity To determine if there's a discontinuity at \( x = 1 \), we need to check the left-hand limit, the right-hand limit, and the function's value at \( x = 1 \). - **Left-hand limit as \( x \) approaches 1:** \[ \lim_{x \to 1^-} I(x) = 1 + 1 = 2 \] - **Right-hand limit as \( x \) approaches 1:** \[ \lim_{x \to 1^+} I(x) = 6 - 1 = 5 \] - **Function value at \( x = 1 \):** \[ I(1) = 6 - 1 = 5 \] Since the left-hand limit (\( 2 \)) does not equal the right-hand limit (\( 5 \)), there is a **point of discontinuity** at \( x = 1 \). **Answer Choice for Discontinuity:** - **A.** The point(s) of discontinuity is/are \( \mathrm{x}= 1 \) ### 2. Behavior of \( I(x) \) at the Point of Discontinuity At \( x = 1 \), the function value is \( I(1) = 5 \). This means that while the right-hand limit and the function's value at \( x = 1 \) are both 5, the left-hand limit is different, causing a jump discontinuity. **Answer Choice for Function Behavior:** - **A.** At the point(s) of discontinuity, the value(s) of the function \( I(x) \) is/are 5. ### Summary - **Points of Discontinuity:** \( x = 1 \) - **Function Value at Discontinuity:** \( I(1) = 5 \) **Final Answers:** 1. **Locate all points of discontinuity.** - **A.** The point(s) of discontinuity is/are \( x = 1 \) 2. **Discuss the behavior of \( I(x) \) at its point(s) of discontinuity.** - **A.** At the point(s) of discontinuity, the value(s) of the function \( I(x) \) is/are 5.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To analyze the function \( I(x) \), we find that it is piecewise defined with a potential point of discontinuity at \( x = 1 \). Evaluating the left-hand limit as \( x \) approaches 1 gives \( I(1^-) = 1 + 1 = 2 \), whereas the value of the function at \( x = 1 \) is \( I(1) = 6 - 1 = 5 \). Therefore, there is a discontinuity at \( x = 1 \). A. The point(s) of discontinuity is/are \( x = 1 \). At the point of discontinuity, we can see that the left limit does not equal the function value, indicating the jump. So, the left-hand limit approaches 2 while the function value at that point is 5, resulting in different behaviors based on the direction of approach. A. At the point(s) of discontinuity, the value(s) of the function \( I(x) \) is/are 5.

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad