Pregunta
upstudy study bank question image url

Question 2 50 pts Identify the domain and range of the following radical function. \[ y=\sqrt[3]{x}-3 \] Domain: \( x \geq 0 \) Range: \( y \geq 1 \) Domain: \( x \geq 1 \) Range: \( y \geq 3 \) Domain: All Real Numbers Range: All Real Numbers Domain: \( x \geq 3 \) Range: \( y \geq-1 \)

Ask by Collins Knight. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Domain: All Real Numbers Range: All Real Numbers

Solución

To determine the **domain** and **range** of the function \( y = \sqrt[3]{x} - 3 \), let's analyze the function step by step. ### 1. Domain The **domain** of a function consists of all possible input values (\( x \)) for which the function is defined. - The cube root function, \( \sqrt[3]{x} \), is defined for **all real numbers**. Unlike even roots (like square roots) which are only defined for non-negative numbers, cube roots can take any real number as input. - Subtracting 3 from \( \sqrt[3]{x} \) does not impose any additional restrictions on the domain. **Therefore, the domain is all real numbers.** ### 2. Range The **range** of a function consists of all possible output values (\( y \)) that the function can produce. - Since \( \sqrt[3]{x} \) can produce any real number, subtracting 3 from it simply shifts the output values down by 3 units. - This shift does not limit the range; \( y \) can still take **any real value**. **Therefore, the range is all real numbers.** ### Conclusion The correct identification is: - **Domain:** All Real Numbers - **Range:** All Real Numbers **Answer:** Domain: All Real Numbers Range: All Real Numbers

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

The function \(y = \sqrt[3]{x} - 3\) is a cubic root function shifted downward by 3 units. Unlike square root functions, cubic root functions have a domain that includes all real numbers, since you can take the cube root of any real number without restriction. The range of this function is also all real numbers. As \(x\) approaches negative infinity, \(y\) will approach negative infinity as well, and as \(x\) approaches positive infinity, \(y\) will approach positive infinity. So, you can put on your math party hats—this function is open for business across the whole real number line! If you're ever in doubt about domain and range, remember that the roots of odd degrees (like cube roots) are friendly characters, inviting every real number to join the party!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad