Pregunta
upstudy study bank question image url

Find the area of an equilateral triangle that has side lengths of 8 cm . Round your answer to the nearest tenth. The area of the equilateral triangle is

Ask by Marsh Schneider. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The area of the equilateral triangle is 27.7 cm².

Solución

To find the area of an equilateral triangle with side length \( a = 8 \) cm, you can use the formula: \[ \text{Area} = \frac{\sqrt{3}}{4} \times a^2 \] Plugging in the given side length: \[ \text{Area} = \frac{\sqrt{3}}{4} \times 8^2 = \frac{\sqrt{3}}{4} \times 64 = 16\sqrt{3} \] Using the approximate value of \( \sqrt{3} \approx 1.732 \): \[ \text{Area} \approx 16 \times 1.732 = 27.712 \text{ cm}^2 \] Rounded to the nearest tenth: \[ \text{Area} \approx 27.7 \text{ cm}^2 \] **The area of the equilateral triangle is 27.7 cm².**

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To find the area of an equilateral triangle, you can use the formula: Area = (sqrt(3)/4) * side^2. So for a triangle with a side length of 8 cm, the area would be (sqrt(3)/4) * (8^2) = (sqrt(3)/4) * 64 = 16sqrt(3). Rounding this to the nearest tenth gives you approximately 27.7 cm². Another fun fact: The concept of equilateral triangles has been around for millennia! Ancient mathematicians discovered properties of these triangles that laid the groundwork for much of modern geometry. They appreciated symmetry and balance, which is why you'll often see equilateral triangles in art, architecture, and even nature! If you're ever faced with an equilateral triangle in real life, like when slicing a slice of pizza or pie that looks completely equal, just remember this area formula! It can also come in handy in various architectural designs where space needs to be calculated efficiently. So whether you're designing a kite or drafting a blueprint, keep that triangle in mind!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad