Pregunta
upstudy study bank question image url

i \( 3^{x}-3^{x-2}=24 \) if \( 3^{x}+3^{x+2}=10 \) iii \( 2^{x}+2^{x}+2^{x}=96 \) iv \( 12^{x}+12^{x}=288 \) \( 2^{x}+4^{x+1}=80 \)

Ask by Whittaker Todd. in South Africa
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

Solutions for the equations are: 1. \( x = 3 \) 2. \( x = 0 \) 3. \( x = 5 \) 4. \( x = 2 \) 5. \( x \approx 2.12 \)

Solución

Sure, let's solve each of the given exponential equations step by step to find the value of \( x \). --- ### **i. \( 3^{x} - 3^{x-2} = 24 \)** **Step 1:** Factor out \( 3^{x-2} \) \[ 3^{x} - 3^{x-2} = 3^{x-2} \left( 3^{2} - 1 \right) = 3^{x-2} \times (9 - 1) = 3^{x-2} \times 8 \] So, \[ 3^{x-2} \times 8 = 24 \] **Step 2:** Solve for \( 3^{x-2} \) \[ 3^{x-2} = \frac{24}{8} = 3 \] **Step 3:** Express 3 as a power of 3 \[ 3 = 3^{1} \] So, \[ 3^{x-2} = 3^{1} \implies x - 2 = 1 \implies x = 3 \] **Answer:** \( x = 3 \) --- ### **ii. \( 3^{x} + 3^{x+2} = 10 \)** **Step 1:** Factor out \( 3^{x} \) \[ 3^{x} + 3^{x+2} = 3^{x} \left(1 + 3^{2}\right) = 3^{x} \times (1 + 9) = 3^{x} \times 10 \] So, \[ 3^{x} \times 10 = 10 \] **Step 2:** Solve for \( 3^{x} \) \[ 3^{x} = \frac{10}{10} = 1 \] **Step 3:** Express 1 as a power of 3 \[ 1 = 3^{0} \] So, \[ 3^{x} = 3^{0} \implies x = 0 \] **Answer:** \( x = 0 \) --- ### **iii. \( 2^{x} + 2^{x} + 2^{x} = 96 \)** **Step 1:** Combine like terms \[ 3 \times 2^{x} = 96 \] **Step 2:** Solve for \( 2^{x} \) \[ 2^{x} = \frac{96}{3} = 32 \] **Step 3:** Express 32 as a power of 2 \[ 32 = 2^{5} \] So, \[ 2^{x} = 2^{5} \implies x = 5 \] **Answer:** \( x = 5 \) --- ### **iv. \( 12^{x} + 12^{x} = 288 \)** **Step 1:** Combine like terms \[ 2 \times 12^{x} = 288 \] **Step 2:** Solve for \( 12^{x} \) \[ 12^{x} = \frac{288}{2} = 144 \] **Step 3:** Express 144 as a power of 12 Note that \( 12^{2} = 144 \). So, \[ 12^{x} = 12^{2} \implies x = 2 \] **Answer:** \( x = 2 \) --- ### **v. \( 2^{x} + 4^{x+1} = 80 \)** **Step 1:** Express \( 4^{x+1} \) in terms of base 2. Since \( 4 = 2^{2} \), \[ 4^{x+1} = (2^{2})^{x+1} = 2^{2(x+1)} = 2^{2x + 2} \] **Step 2:** Rewrite the equation \[ 2^{x} + 2^{2x + 2} = 80 \] **Step 3:** Let’s set \( y = 2^{x} \). Then \( 2^{2x} = y^{2} \). So, \[ y + y^{2} \times 2^{2} = 80 \implies y + 4y^{2} = 80 \] **Step 4:** Rearrange the equation \[ 4y^{2} + y - 80 = 0 \] **Step 5:** Solve the quadratic equation Using the quadratic formula \( y = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \), where \( a = 4 \), \( b = 1 \), and \( c = -80 \), \[ y = \frac{-1 \pm \sqrt{1 + 1280}}{8} = \frac{-1 \pm \sqrt{1281}}{8} \] Calculate \( \sqrt{1281} \approx 35.8 \), \[ y \approx \frac{-1 + 35.8}{8} \approx \frac{34.8}{8} \approx 4.35 \] We discard the negative solution since \( y = 2^{x} > 0 \). **Step 6:** Solve for \( x \) \[ 2^{x} \approx 4.35 \] Take the natural logarithm on both sides: \[ x \ln 2 \approx \ln 4.35 \implies x \approx \frac{\ln 4.35}{\ln 2} \approx \frac{1.470}{0.693} \approx 2.12 \] **Answer:** \( x \approx 2.12 \) --- **Summary of Solutions:** 1. **i.** \( x = 3 \) 2. **ii.** \( x = 0 \) 3. **iii.** \( x = 5 \) 4. **iv.** \( x = 2 \) 5. **v.** \( x \approx 2.12 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To solve the equations provided, let's consider the first equation: The equation \( 3^{x} - 3^{x-2} = 24 \) can be simplified by factoring out \( 3^{x-2} \), which gives us \( 3^{x-2} (3^2 - 1) = 24 \). Thus, \( 3^{x-2} \cdot 8 = 24 \) leads us to find \( 3^{x-2} = 3 \) and subsequently \( x = 4 \). For the equation \( 3^{x} + 3^{x+2} = 10 \), we can factor it as \( 3^{x}(1 + 9) = 10 \), giving \( 10 \cdot 3^{x} = 10 \), which results in \( 3^{x} = 1 \) and hence \( x = 0 \). Now, moving to \( 2^{x} + 2^{x} + 2^{x} = 96 \), we can combine the left side to yield \( 3 \cdot 2^{x} = 96 \). Dividing both sides by 3 provides \( 2^{x} = 32 \), leading us to find \( x = 5 \). Next, for \( 12^{x} + 12^{x} = 288 \), we can rewrite it as \( 2 \cdot 12^{x} = 288 \). Dividing both sides by 2 gives \( 12^{x} = 144 \) and thus \( x = 2 \). Finally, in the last equation \( 2^{x} + 4^{x+1} = 80 \), we can express \( 4^{x+1} \) as \( 2^{2(x+1)} = 2^{2x + 2} \). Hence, the equation transforms into \( 2^{x} + 4 \cdot 2^{2x} = 80 \). Using substitutions and solving will yield the corresponding value of \( x \). Each equation provides a fun challenge, and by factoring and manipulating the expressions, we can find all the values of \( x \) required! Happy solving!

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad