Pregunta
upstudy study bank question image url

p.t \( \cos 75^{\circ}=\tan 8^{\circ}=\frac{\cos 7^{\circ}-\sin 7^{\circ}}{\cos 7^{\circ}+\sin 7^{\circ}} \)

Ask by Ortiz Flynn. in India
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

\( \cos 75^{\circ} = \frac{\sqrt{6} - \sqrt{2}}{4} \)

Solución

Given the equation \( \cos 75^{\circ}=\tan 8^{\circ}=\frac{\cos 7^{\circ}-\sin 7^{\circ}}{\cos 7^{\circ}+\sin 7^{\circ}} \), we can start by simplifying the expression on the right-hand side of the equation. The expression \( \frac{\cos 7^{\circ}-\sin 7^{\circ}}{\cos 7^{\circ}+\sin 7^{\circ}} \) can be simplified using trigonometric identities. Let's simplify this expression step by step. Calculate the value by following steps: - step0: Calculate: \(\frac{\left(\cos\left(7^{\circ}\right)-\sin\left(7^{\circ}\right)\right)}{\left(\cos\left(7^{\circ}\right)+\sin\left(7^{\circ}\right)\right)}\) - step1: Remove the parentheses: \(\frac{\cos\left(7^{\circ}\right)-\sin\left(7^{\circ}\right)}{\cos\left(7^{\circ}\right)+\sin\left(7^{\circ}\right)}\) - step2: Calculate the trigonometric value: \(0.781286\) The simplified expression is \( \frac{\cos 7^{\circ}-\sin 7^{\circ}}{\cos 7^{\circ}+\sin 7^{\circ}} = 0.781286 \). Now, we have the equation \( \cos 75^{\circ}=\tan 8^{\circ}=0.781286 \). To find the value of \( \cos 75^{\circ} \), we can use the fact that \( \cos 75^{\circ} = \cos (45^{\circ} + 30^{\circ}) \). Using the angle addition formula for cosine, we have \( \cos (45^{\circ} + 30^{\circ}) = \cos 45^{\circ} \cos 30^{\circ} - \sin 45^{\circ} \sin 30^{\circ} \). Substituting the known values, we get \( \cos 75^{\circ} = \frac{\sqrt{2}}{2} \cdot \frac{\sqrt{3}}{2} - \frac{\sqrt{2}}{2} \cdot \frac{1}{2} \). Simplifying this expression, we find \( \cos 75^{\circ} = \frac{\sqrt{6} - \sqrt{2}}{4} \). Therefore, the value of \( \cos 75^{\circ} \) is \( \frac{\sqrt{6} - \sqrt{2}}{4} \).

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

The Deep Dive

Did you know that the angles in trigonometry have fascinating historical significance? The ancient Greeks were among the first to study angles and their relationships, using them to reflect on the cosmos and even navigation! Fast forward to today, we still rely on angles and trigonometric functions for everything from architecture to engineering to even digital graphics. Understanding these relationships helps in creating everything from skyscrapers to video games! Let's get practical! When working with angles like \( \cos 75^{\circ} \) or \( \tan 8^{\circ} \), a common mistake is not being aware of the quadrant in which your angle lies. This can lead to miscalculations with positive and negative values. To avoid such slip-ups, always sketch the angle on the unit circle and reference values or use a calculator that can show you the correct quadrant. Happy calculating!

Latest Trigonometry Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad