Find the perimeter of the parallelogram with these vertices, \[ (-2,2),(-2,-2),(3,-2),(3,-6) \] Give an exact answer (not a decimal approximation). Simplify your answer as much as possible. Scratch Area (Not
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
![](/pmw/light_bulb.png?etag=525fd69ac661e11754e2fc9f1b18a4ee)
![](/pmw/spiral_notepad.png?etag=abe3906b7558c543a7b30ba53a3b5a5b)
Extra Insights
To find the perimeter of the parallelogram given the vertices \((-2,2)\), \((-2,-2)\), \((3,-2)\), and \((3,-6)\), we first need to determine the lengths of the sides. 1. **Calculate the lengths of the sides**: - The distance between \((-2,2)\) and \((-2,-2)\): \[ d_1 = \sqrt{((-2)-(-2))^2 + (2-(-2))^2} = \sqrt{0^2 + (2+2)^2} = \sqrt{4^2} = 4. \] - The distance between \((-2,-2)\) and \((3,-2)\): \[ d_2 = \sqrt{((3)-(-2))^2 + ((-2)-(-2))^2} = \sqrt{(3+2)^2 + 0^2} = \sqrt{5^2} = 5. \] 2. **Perimeter calculation**: The perimeter \(P\) of a parallelogram can be calculated using the formula: \[ P = 2(d_1 + d_2). \] Substituting the values we found: \[ P = 2(4 + 5) = 2 \times 9 = 18. \] Thus, the perimeter of the parallelogram is \(\boxed{18}\).
preguntas relacionadas
![](/pmw/img-try-permium.webp)