Pregunta
Write in terms of \( i \). Simplify your answer as much as possible \( \quad-\sqrt{-4} \)
Ask by Rose Tyler. in the United States
Jan 24,2025
Solución de tutoría real
Respuesta verificada por el tutor
Responder
\(-2i\)
Solución
To simplify the expression \( -\sqrt{-4} \) in terms of the imaginary unit \( i \), follow these steps:
1. **Understand the Imaginary Unit \( i \):**
The imaginary unit \( i \) is defined as:
\[
i = \sqrt{-1}
\]
2. **Simplify \( \sqrt{-4} \):**
Break down the expression inside the square root:
\[
\sqrt{-4} = \sqrt{4 \times (-1)} = \sqrt{4} \times \sqrt{-1}
\]
Compute each part:
\[
\sqrt{4} = 2 \quad \text{and} \quad \sqrt{-1} = i
\]
Therefore:
\[
\sqrt{-4} = 2i
\]
3. **Apply the Negative Sign:**
Now, apply the negative sign to the simplified square root:
\[
-\sqrt{-4} = -2i
\]
**Final Answer:**
\[
-2i
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Como
error msg
Explicar
Simplifique esta solución
Extra Insights
To express \(-\sqrt{-4}\) in terms of \(i\), we start by rewriting the square root of a negative number. We know that \(\sqrt{-4}\) can be broken down as follows: \[ \sqrt{-4} = \sqrt{4} \cdot \sqrt{-1} = 2i \] Now, applying the negative sign: \[ -\sqrt{-4} = -2i \] Thus, the simplified answer is \(-2i\).
¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde
Hazte Premium