A system of equations was written as an augmented matrix, which was row reduced to: \( \left[\begin{array}{cccc}1 & 0 & 0 & -3 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -1\end{array}\right] \) What is the solution to the original system of equations? \( x= \) \( y= \) \( z= \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
The Deep Dive
The row reduced augmented matrix gives us the solutions directly. From the matrix, we can see that: - The first row corresponds to \(x = -3\), - The second row corresponds to \(y = 0\), and - The third row corresponds to \(z = -1\). Therefore, the solution to the original system of equations is: \( x = -3 \) \( y = 0 \) \( z = -1 \) This means that the point \((-3, 0, -1)\) is where all three planes represented by the equations intersect.