Pregunta
upstudy study bank question image url

2) \( \left\{\begin{array}{l}x-y=2 \\ 2 x+3 y=9\end{array}\right. \)

Ask by Vega Rose. in the United States
Jan 24,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The solution is \( x = 3 \) and \( y = 1 \).

Solución

To solve the given system of equations: \[ \begin{cases} x - y = 2 \\ 2x + 3y = 9 \end{cases} \] we can use the **substitution method**. Here's a step-by-step solution: ### Step 1: Solve the First Equation for \( x \) From the first equation: \[ x - y = 2 \] Add \( y \) to both sides to isolate \( x \): \[ x = y + 2 \] ### Step 2: Substitute \( x \) into the Second Equation Now, substitute \( x = y + 2 \) into the second equation: \[ 2x + 3y = 9 \] Replacing \( x \) gives: \[ 2(y + 2) + 3y = 9 \] ### Step 3: Simplify and Solve for \( y \) Expand the equation: \[ 2y + 4 + 3y = 9 \] Combine like terms: \[ 5y + 4 = 9 \] Subtract 4 from both sides: \[ 5y = 5 \] Divide both sides by 5: \[ y = 1 \] ### Step 4: Find \( x \) Using the Value of \( y \) Recall from Step 1: \[ x = y + 2 \] Substitute \( y = 1 \): \[ x = 1 + 2 = 3 \] ### **Solution** \[ \boxed{x = 3,\quad y = 1} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Bonus Knowledge

To solve the system of equations, we can use substitution or elimination. Let's start with the first equation: \( x - y = 2 \). Rearranging it gives us \( x = y + 2 \). We can substitute this expression for \( x \) into the second equation \( 2x + 3y = 9 \). Substituting \( x \) gives us: \[ 2(y + 2) + 3y = 9 \] This simplifies to: \[ 2y + 4 + 3y = 9 \] Combine like terms: \[ 5y + 4 = 9 \] Subtract 4 from both sides: \[ 5y = 5 \] Dividing by 5 gives: \[ y = 1 \] Now substitute \( y = 1 \) back into the first equation to find \( x \): \[ x - 1 = 2 \] So: \[ x = 3 \] Thus, the solution to the system is \( x = 3 \) and \( y = 1 \). --- Historically, systems of equations have been used since ancient times, with early Egyptians utilizing methods to solve linear equations in a practical manner. The concept became more formalized with the work of mathematicians like René Descartes and Carl Friedrich Gauss, who developed systematic methods for handling such systems. In real-world situations, systems of equations can be seen in various fields such as economics, engineering, and physics. For instance, they are often used to calculate income and expenses in budget planning, where multiple constraints must be satisfied to achieve a desired financial outcome.

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad