Pregunta
upstudy study bank question image url

The pressure of the oil in a reservoir tends to drop with time. By taking sample pressure readings for a particular oil reservoir, petroleum engineers have found that the change in pressure is given by the function \( P(t)=t^{3}-8 t^{2}+16 t \), where \( t \) is time in years from the date of the first reading. (a) Find the following: \( P(0), P(2), P(3), P(5) \) (b) Graph \( P(t) \) (c) Over what periods is the graph increasing and decreasing. A. Increases from 0 to \( 4 / 3 \) years and again after the 4 th year. Decreases from \( 4 / 3 \) to 4 years. B. Decreases from 0 to \( 4 / 3 \) years and again after the 5 th year. Increases from \( 4 / 3 \) to 5 years. C. Increases from 0 to \( 4 / 3 \) years and again after the 5 th year. Decreases from \( 4 / 3 \) to 5 years. D. Decreases from 0 to \( 4 / 3 \) years and again after the 4 th year. Increases from \( 4 / 3 \) to 4 years.

Ask by Chandler Gray. in the United States
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The graph of \( P(t) \) increases from 0 to \( \frac{4}{3} \) years and again after the 4th year, and decreases from \( \frac{4}{3} \) to 4 years.

Solución

To determine over which periods the pressure \( P(t) = t^{3} - 8t^{2} + 16t \) is increasing or decreasing, we'll analyze the first derivative of \( P(t) \), denoted as \( P'(t) \). This derivative will help us identify the critical points and the behavior of the function. ### Step 1: Find the First Derivative \( P'(t) \) \[ P(t) = t^{3} - 8t^{2} + 16t \] Differentiate \( P(t) \) with respect to \( t \): \[ P'(t) = \frac{d}{dt}(t^{3}) - \frac{d}{dt}(8t^{2}) + \frac{d}{dt}(16t) = 3t^{2} - 16t + 16 \] ### Step 2: Find Critical Points by Solving \( P'(t) = 0 \) Set the first derivative equal to zero and solve for \( t \): \[ 3t^{2} - 16t + 16 = 0 \] Use the quadratic formula: \[ t = \frac{-b \pm \sqrt{b^{2} - 4ac}}{2a} \] Where \( a = 3 \), \( b = -16 \), and \( c = 16 \): \[ t = \frac{16 \pm \sqrt{(-16)^{2} - 4 \times 3 \times 16}}{2 \times 3} = \frac{16 \pm \sqrt{256 - 192}}{6} = \frac{16 \pm \sqrt{64}}{6} \] \[ t = \frac{16 \pm 8}{6} \] So, the critical points are: \[ t = \frac{24}{6} = 4 \quad \text{and} \quad t = \frac{8}{6} = \frac{4}{3} \] ### Step 3: Determine Intervals of Increase and Decrease We'll test the sign of \( P'(t) \) in the intervals defined by the critical points: 1. **Interval \( (0, \frac{4}{3}) \):** Choose \( t = 1 \): \[ P'(1) = 3(1)^2 - 16(1) + 16 = 3 - 16 + 16 = 3 > 0 \] **Conclusion:** \( P(t) \) is **increasing** in this interval. 2. **Interval \( \left(\frac{4}{3}, 4\right) \):** Choose \( t = 2 \): \[ P'(2) = 3(2)^2 - 16(2) + 16 = 12 - 32 + 16 = -4 < 0 \] **Conclusion:** \( P(t) \) is **decreasing** in this interval. 3. **Interval \( (4, \infty) \):** Choose \( t = 5 \): \[ P'(5) = 3(5)^2 - 16(5) + 16 = 75 - 80 + 16 = 11 > 0 \] **Conclusion:** \( P(t) \) is **increasing** in this interval. ### Step 4: Summarize the Results - **Increasing:** From \( 0 \) to \( \frac{4}{3} \) years and again after the **4th** year. - **Decreasing:** From \( \frac{4}{3} \) to **4 years**. ### **Final Answer:** **Option A** is correct. > **A.** Increases from 0 to \( \frac{4}{3} \) years and again after the 4th year. Decreases from \( \frac{4}{3} \) to 4 years.

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

The pressure readings based on the function \( P(t) = t^3 - 8t^2 + 16t \) yield the following results: - \( P(0) = 0^3 - 8(0^2) + 16(0) = 0 \) - \( P(2) = 2^3 - 8(2^2) + 16(2) = 8 - 32 + 32 = 8 \) - \( P(3) = 3^3 - 8(3^2) + 16(3) = 27 - 72 + 48 = 3 \) - \( P(5) = 5^3 - 8(5^2) + 16(5) = 125 - 200 + 80 = 5 \) As for graphing \( P(t) \), you would find the critical points by differentiating \( P(t) \) to identify where it’s increasing or decreasing. The graph will show peaks and valleys reflecting the behavior of oil pressure over time. To analyze the periods of increase and decrease, you can solve for \( P'(t) \) and find when it equals zero to locate max/min points. After solving, you'd notice that the function is increasing from \( 0 \) to \( \frac{4}{3} \) years and again after \( 4 \) years. Thus, the graph decreases from \( \frac{4}{3} \) to \( 4 \) years, making option **A** the correct choice: Increases from \( 0 \) to \( \frac{4}{3} \) years and again after the 4th year, decreases from \( \frac{4}{3} \) to \( 4 \) years. In the oil industry, many engineers lean on pressure models just like this one to predict reservoir behavior over time. These models help in planning extraction strategies, determining when to begin secondary recovery methods, and ensuring that production is economically viable. For those curious to dive deeper into the mathematical modeling of natural resources, consider exploring texts on differential equations applied in engineering or reservoir simulation techniques. These resources will provide insights into complex behaviors of natural phenomena and how to manage them effectively!

preguntas relacionadas

Latest Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad